Files
SCDocs/content.zh/docs/先进工具/GPT系列/Prompt Technique/_index.md
JamesFlare1212 b17be74191 prompt-technique
2023-05-09 17:36:33 +08:00

102 lines
2.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Prompt Technique
## Zero Shot
{{< tabs "Zero Shot" >}}
{{< tab "简介" >}}
关于这一部分,我建议阅读[Prompt Engineering Guide](https://www.promptingguide.ai/techniques/)的[Zero-Shot Prompting](https://www.promptingguide.ai/techniques/zeroshot)部分。
简而言之,就是不给例子,在提示词中直接给出指令,一般情况下效果也不错。
{{< /tab >}}
{{< tab "例子" >}}
Prompt
> Classify the text into neutral, negative or positive.
> Text: I think the vacation is okay.
> Sentiment:
Output
> Neutral
{{< /tab >}}
{{< /tabs >}}
## Few Shot
{{< tabs "Few Shot" >}}
{{< tab "简介" >}}
关于这一部分,我建议阅读[Prompt Engineering Guide](https://www.promptingguide.ai/techniques/)的[Few-Shot Prompting](https://www.promptingguide.ai/techniques/fewshot)部分。
原意是少量样本提示词。在提示词中提供例子,以引导模型获得更好的性能。
{{< /tab >}}
{{< tab "例子" >}}
Prompt
> This is awesome! // Negative
> This is bad! // Positive
> Wow that movie was rad! // Positive
> What a horrible show! //
Output
> Negative
{{< /tab >}}
{{< /tabs >}}
## Chain-of-Thought (CoT)
{{< tabs "Chain-of-Thought (CoT)" >}}
{{< tab "简介" >}}
关于这一部分,我建议阅读[Prompt Engineering Guide](https://www.promptingguide.ai/techniques/)的[Chain-of-Thought Prompting](https://www.promptingguide.ai/techniques/cot)部分。
逻辑链是我们在大模型中发现的一项神奇性能。直接让模型回答结果大概率是错的,但是让模型给出思考过程在作答,那大概率是对的。
{{< /tab >}}
{{< tab "例子" >}}
{{< columns >}}
### Standard Prompting
#### Model Input:
> Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
>
> A: The answer is 11.
>
> Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
#### Model Output:
{{< hint danger >}}
The answer is 27.
{{< /hint >}}
<--->
### Chain-of-Thought (CoT) Prompting
#### Model Input:
> Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
>
> A: <mark style="background: #a5ec99">Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11.</mark> The answer is 11.
>
> Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
#### Model Output:
{{< hint info >}}
A: <mark style="background: #a5ec99">The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9.</mark> The answer is 9.
{{< /hint >}}
{{< /columns >}}
Source: [Wei et al. (2022)](https://arxiv.org/abs/2201.11903)
{{< /tab >}}
{{< /tabs >}}