prompt-technique
This commit is contained in:
@@ -1,6 +1,6 @@
|
|||||||
# Prompt Example
|
# Prompt Example
|
||||||
|
|
||||||
## 词典
|
## 英文词典
|
||||||
|
|
||||||
{{< tabs "词典" >}}
|
{{< tabs "词典" >}}
|
||||||
|
|
||||||
|
|||||||
@@ -1,3 +1,102 @@
|
|||||||
# Prompt Technique
|
# Prompt Technique
|
||||||
|
|
||||||
## Few Shot
|
## Zero Shot
|
||||||
|
|
||||||
|
{{< tabs "Zero Shot" >}}
|
||||||
|
|
||||||
|
{{< tab "简介" >}}
|
||||||
|
关于这一部分,我建议阅读[Prompt Engineering Guide](https://www.promptingguide.ai/techniques/)的[Zero-Shot Prompting](https://www.promptingguide.ai/techniques/zeroshot)部分。
|
||||||
|
|
||||||
|
简而言之,就是不给例子,在提示词中直接给出指令,一般情况下效果也不错。
|
||||||
|
{{< /tab >}}
|
||||||
|
|
||||||
|
{{< tab "例子" >}}
|
||||||
|
Prompt:
|
||||||
|
|
||||||
|
> Classify the text into neutral, negative or positive.
|
||||||
|
> Text: I think the vacation is okay.
|
||||||
|
> Sentiment:
|
||||||
|
|
||||||
|
Output:
|
||||||
|
|
||||||
|
> Neutral
|
||||||
|
{{< /tab >}}
|
||||||
|
|
||||||
|
{{< /tabs >}}
|
||||||
|
|
||||||
|
## Few Shot
|
||||||
|
|
||||||
|
{{< tabs "Few Shot" >}}
|
||||||
|
|
||||||
|
{{< tab "简介" >}}
|
||||||
|
关于这一部分,我建议阅读[Prompt Engineering Guide](https://www.promptingguide.ai/techniques/)的[Few-Shot Prompting](https://www.promptingguide.ai/techniques/fewshot)部分。
|
||||||
|
|
||||||
|
原意是少量样本提示词。在提示词中提供例子,以引导模型获得更好的性能。
|
||||||
|
{{< /tab >}}
|
||||||
|
|
||||||
|
{{< tab "例子" >}}
|
||||||
|
Prompt:
|
||||||
|
|
||||||
|
> This is awesome! // Negative
|
||||||
|
> This is bad! // Positive
|
||||||
|
> Wow that movie was rad! // Positive
|
||||||
|
> What a horrible show! //
|
||||||
|
|
||||||
|
Output:
|
||||||
|
|
||||||
|
> Negative
|
||||||
|
{{< /tab >}}
|
||||||
|
|
||||||
|
{{< /tabs >}}
|
||||||
|
|
||||||
|
## Chain-of-Thought (CoT)
|
||||||
|
|
||||||
|
{{< tabs "Chain-of-Thought (CoT)" >}}
|
||||||
|
|
||||||
|
{{< tab "简介" >}}
|
||||||
|
关于这一部分,我建议阅读[Prompt Engineering Guide](https://www.promptingguide.ai/techniques/)的[Chain-of-Thought Prompting](https://www.promptingguide.ai/techniques/cot)部分。
|
||||||
|
|
||||||
|
逻辑链是我们在大模型中发现的一项神奇性能。直接让模型回答结果大概率是错的,但是让模型给出思考过程在作答,那大概率是对的。
|
||||||
|
{{< /tab >}}
|
||||||
|
|
||||||
|
{{< tab "例子" >}}
|
||||||
|
{{< columns >}}
|
||||||
|
### Standard Prompting
|
||||||
|
|
||||||
|
#### Model Input:
|
||||||
|
|
||||||
|
> Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
|
||||||
|
>
|
||||||
|
> A: The answer is 11.
|
||||||
|
>
|
||||||
|
> Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
|
||||||
|
|
||||||
|
#### Model Output:
|
||||||
|
|
||||||
|
{{< hint danger >}}
|
||||||
|
The answer is 27.
|
||||||
|
{{< /hint >}}
|
||||||
|
|
||||||
|
<--->
|
||||||
|
|
||||||
|
### Chain-of-Thought (CoT) Prompting
|
||||||
|
|
||||||
|
#### Model Input:
|
||||||
|
|
||||||
|
> Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
|
||||||
|
>
|
||||||
|
> A: <mark style="background: #a5ec99">Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11.</mark> The answer is 11.
|
||||||
|
>
|
||||||
|
> Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
|
||||||
|
|
||||||
|
#### Model Output:
|
||||||
|
|
||||||
|
{{< hint info >}}
|
||||||
|
A: <mark style="background: #a5ec99">The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9.</mark> The answer is 9.
|
||||||
|
{{< /hint >}}
|
||||||
|
{{< /columns >}}
|
||||||
|
|
||||||
|
Source: [Wei et al. (2022)](https://arxiv.org/abs/2201.11903)
|
||||||
|
{{< /tab >}}
|
||||||
|
|
||||||
|
{{< /tabs >}}
|
||||||
Reference in New Issue
Block a user