diff --git a/content.zh/docs/先进工具/GPT系列/Prompt Example/_index.md b/content.zh/docs/先进工具/GPT系列/Prompt Example/_index.md index 20df4e3..aa1a441 100644 --- a/content.zh/docs/先进工具/GPT系列/Prompt Example/_index.md +++ b/content.zh/docs/先进工具/GPT系列/Prompt Example/_index.md @@ -1,6 +1,6 @@ # Prompt Example -## 词典 +## 英文词典 {{< tabs "词典" >}} diff --git a/content.zh/docs/先进工具/GPT系列/Prompt Technique/_index.md b/content.zh/docs/先进工具/GPT系列/Prompt Technique/_index.md index 0a5b178..38bf1fb 100644 --- a/content.zh/docs/先进工具/GPT系列/Prompt Technique/_index.md +++ b/content.zh/docs/先进工具/GPT系列/Prompt Technique/_index.md @@ -1,3 +1,102 @@ # Prompt Technique -## Few Shot \ No newline at end of file +## Zero Shot + +{{< tabs "Zero Shot" >}} + +{{< tab "简介" >}} +关于这一部分,我建议阅读[Prompt Engineering Guide](https://www.promptingguide.ai/techniques/)的[Zero-Shot Prompting](https://www.promptingguide.ai/techniques/zeroshot)部分。 + +简而言之,就是不给例子,在提示词中直接给出指令,一般情况下效果也不错。 +{{< /tab >}} + +{{< tab "例子" >}} +Prompt: + +> Classify the text into neutral, negative or positive. +> Text: I think the vacation is okay. +> Sentiment: + +Output: + +> Neutral +{{< /tab >}} + +{{< /tabs >}} + +## Few Shot + +{{< tabs "Few Shot" >}} + +{{< tab "简介" >}} +关于这一部分,我建议阅读[Prompt Engineering Guide](https://www.promptingguide.ai/techniques/)的[Few-Shot Prompting](https://www.promptingguide.ai/techniques/fewshot)部分。 + +原意是少量样本提示词。在提示词中提供例子,以引导模型获得更好的性能。 +{{< /tab >}} + +{{< tab "例子" >}} +Prompt: + +> This is awesome! // Negative +> This is bad! // Positive +> Wow that movie was rad! // Positive +> What a horrible show! // + +Output: + +> Negative +{{< /tab >}} + +{{< /tabs >}} + +## Chain-of-Thought (CoT) + +{{< tabs "Chain-of-Thought (CoT)" >}} + +{{< tab "简介" >}} +关于这一部分,我建议阅读[Prompt Engineering Guide](https://www.promptingguide.ai/techniques/)的[Chain-of-Thought Prompting](https://www.promptingguide.ai/techniques/cot)部分。 + +逻辑链是我们在大模型中发现的一项神奇性能。直接让模型回答结果大概率是错的,但是让模型给出思考过程在作答,那大概率是对的。 +{{< /tab >}} + +{{< tab "例子" >}} +{{< columns >}} +### Standard Prompting + +#### Model Input: + +> Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? +> +> A: The answer is 11. +> +> Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have? + +#### Model Output: + +{{< hint danger >}} +The answer is 27. +{{< /hint >}} + +<---> + +### Chain-of-Thought (CoT) Prompting + +#### Model Input: + +> Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? +> +> A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11. +> +> Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have? + +#### Model Output: + +{{< hint info >}} +A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. +{{< /hint >}} +{{< /columns >}} + +Source: [Wei et al. (2022)](https://arxiv.org/abs/2201.11903) +{{< /tab >}} + +{{< /tabs >}} \ No newline at end of file