315 lines
11 KiB
Markdown
315 lines
11 KiB
Markdown
---
|
||
title: 使用 Ollama 在RTX 4090上部署 DeepSeek R1 Distill 系列模型并优化
|
||
subtitle:
|
||
date: 2025-02-08T18:29:29-05:00
|
||
lastmod: 2025-02-08T18:29:29-05:00
|
||
slug: ollama-deepseek-r1-distill
|
||
draft: false
|
||
author:
|
||
name: James
|
||
link: https://www.jamesflare.com
|
||
email:
|
||
avatar: /site-logo.avif
|
||
description: 本篇文章详细介绍了如何利用DeepSeek-R1及其蒸馏模型在消费级硬件上的应用,并探讨了其性能优化和不足之处。同时提供了安装Ollama及创建深度定制化模型的步骤,以及一些提高运行效率的方法,包括使用Flash Attention和KV Cache量化等技巧。
|
||
keywords: ["DeepSeek-R1","Ollama","KV Cache","Flash Attention"]
|
||
license:
|
||
comment: true
|
||
weight: 0
|
||
tags:
|
||
- 大语言模型
|
||
- llama.cpp
|
||
- 量化
|
||
- Ollama
|
||
categories:
|
||
- 大语言模型
|
||
collections:
|
||
- LLM
|
||
hiddenFromHomePage: false
|
||
hiddenFromSearch: false
|
||
hiddenFromRss: false
|
||
hiddenFromRelated: false
|
||
summary: 本篇文章详细介绍了如何利用DeepSeek-R1及其蒸馏模型在消费级硬件上的应用,并探讨了其性能优化和不足之处。同时提供了安装Ollama及创建深度定制化模型的步骤,以及一些提高运行效率的方法,包括使用Flash Attention和KV Cache量化等技巧。
|
||
resources:
|
||
- name: featured-image
|
||
src: featured-image.jpg
|
||
- name: featured-image-preview
|
||
src: featured-image-preview.jpg
|
||
toc: true
|
||
math: false
|
||
lightgallery: true
|
||
password:
|
||
message:
|
||
repost:
|
||
enable: false
|
||
url:
|
||
|
||
# See details front matter: https://fixit.lruihao.cn/documentation/content-management/introduction/#front-matter
|
||
---
|
||
|
||
<!--more-->
|
||
|
||
## 前言
|
||
|
||
最近DeepSeek-R1爆火,原因有多种。不光价格便宜,性能强劲还开源。更难能可贵的是官方放出了几个蒸馏模型,包含各个尺寸。
|
||
|
||
- [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B)
|
||
- [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B)
|
||
- [deepseek-ai/DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B)
|
||
- [deepseek-ai/DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B)
|
||
- [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B)
|
||
- [deepseek-ai/DeepSeek-R1-Distill-Llama-70B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B)
|
||
|
||
这使得一般的消费级硬件也有机会体验Reasoning模型的魅力。不过请注意,这和真正的DeepSeek-R1相差甚远。即便是`DeepSeek-R1-Distill-Qwen-32B`也只是达到o1-mini级别的水平。
|
||
|
||
这一点可以参考官方给出的[图表](https://raw.githubusercontent.com/deepseek-ai/DeepSeek-R1/main/figures/benchmark.jpg)(下面这张图是可以交互的,你可以关闭你不想要的数据)。
|
||
|
||
{{< echarts >}}
|
||
{
|
||
"tooltip": {
|
||
"trigger": "axis",
|
||
"axisPointer": {
|
||
"type": "shadow"
|
||
}
|
||
},
|
||
"legend": {
|
||
"top": 30,
|
||
"data": [
|
||
"DeepSeek-R1",
|
||
"OpenAI-o1-1217",
|
||
"DeepSeek-R1-32B",
|
||
"OpenAI-o1-mini",
|
||
"DeepSeek-V3"
|
||
]
|
||
},
|
||
"grid": {
|
||
"left": "8%",
|
||
"right": "8%",
|
||
"bottom": "10%",
|
||
"containLabel": true
|
||
},
|
||
"xAxis": {
|
||
"type": "category",
|
||
"data": [
|
||
"AIME 2024\n(Pass@1)",
|
||
"Codeforces\n(Percentile)",
|
||
"GPQA Diamond\n(Pass@1)",
|
||
"MATH-500\n(Pass@1)",
|
||
"MMLU\n(Pass@1)",
|
||
"SWE-bench Verified\n(Resolved)"
|
||
],
|
||
"axisLabel": {
|
||
"interval": 0
|
||
}
|
||
},
|
||
"yAxis": {
|
||
"type": "value",
|
||
"min": 0,
|
||
"max": 100,
|
||
"name": "Accuracy / Percentile (%)",
|
||
"nameGap": 32,
|
||
"nameLocation": "center"
|
||
},
|
||
"series": [
|
||
{
|
||
"name": "DeepSeek-R1",
|
||
"type": "bar",
|
||
"data": [79.8, 96.3, 71.5, 97.3, 90.8, 49.2],
|
||
"barGap": "0",
|
||
"label": {
|
||
"show": true,
|
||
"position": "top"
|
||
}
|
||
},
|
||
{
|
||
"name": "OpenAI-o1-1217",
|
||
"type": "bar",
|
||
"data": [79.2, 96.6, 75.7, 96.4, 91.8, 48.9],
|
||
"label": {
|
||
"show": true,
|
||
"position": "top"
|
||
}
|
||
},
|
||
{
|
||
"name": "DeepSeek-R1-32B",
|
||
"type": "bar",
|
||
"data": [72.6, 90.6, 62.1, 94.3, 87.4, 36.8],
|
||
"label": {
|
||
"show": true,
|
||
"position": "top"
|
||
}
|
||
},
|
||
{
|
||
"name": "OpenAI-o1-mini",
|
||
"type": "bar",
|
||
"data": [63.6, 93.4, 60.0, 90.0, 85.2, 41.6],
|
||
"label": {
|
||
"show": true,
|
||
"position": "top"
|
||
}
|
||
},
|
||
{
|
||
"name": "DeepSeek-V3",
|
||
"type": "bar",
|
||
"data": [39.2, 58.7, 59.1, 90.2, 88.5, 42.0],
|
||
"label": {
|
||
"show": true,
|
||
"position": "top"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
{{< /echarts >}}
|
||
|
||
Ollama提供了更方便使用和管理模型的接口和工具,它的后端是llama.cpp。一个基于CPU推理优化的工具,也支持GPU。
|
||
|
||
{{< gh-repo-card-container >}}
|
||
{{< gh-repo-card repo="ollama/ollama" >}}
|
||
{{< gh-repo-card repo="ggerganov/llama.cpp" >}}
|
||
{{< /gh-repo-card-container >}}
|
||
|
||
## 安装Ollama
|
||
|
||
这个根据[Download Ollama](https://ollama.com/download)的指引完成即可。我的环境如下:
|
||
|
||
- 操作系统是Windows 11
|
||
- GPU是NVIDIA RTX 4090
|
||
- CPU是Intel 13900K
|
||
- 内存是128G DDR5
|
||
|
||
## 创建模型
|
||
|
||
在安装好Ollama后,我们就需要创建模型了。一种办法是直接从[Ollama Library](https://ollama.com/library/deepseek-r1:32b-qwen-distill-q4_K_M)拉取。
|
||
|
||
```bash
|
||
ollama pull deepseek-r1:32b-qwen-distill-q4_K_M
|
||
```
|
||
|
||
不过这样拉取的模型的默认上下文长度是4096。这显然不够用也不合理,所以我们要修改一下。
|
||
|
||
一种办法是直接修改Modelfile。如果你不知道一个模型的Modelfile可以执行以下命令查看它的Modelfile。
|
||
|
||
```bash
|
||
ollama show --modelfile deepseek-r1:32b-qwen-distill-q4_K_M
|
||
```
|
||
|
||
这里我给出我用的Modelfile,可以新建一个文本文件保存,比如叫做`DeepSeek-R1-Distill-Qwen-32B-Q4_K_M.txt`。
|
||
|
||
```text
|
||
FROM deepseek-r1:32b-qwen-distill-q4_K_M
|
||
|
||
TEMPLATE """{{- if .System }}{{ .System }}{{ end }}
|
||
{{- range $i, $_ := .Messages }}
|
||
{{- $last := eq (len (slice $.Messages $i)) 1}}
|
||
{{- if eq .Role "user" }}<|User|>{{ .Content }}
|
||
{{- else if eq .Role "assistant" }}<|Assistant|>{{ .Content }}{{- if not $last }}<|end▁of▁sentence|>{{- end }}
|
||
{{- end }}
|
||
{{- if and $last (ne .Role "assistant") }}<|Assistant|>{{- end }}
|
||
{{- end }}"""
|
||
PARAMETER stop <|begin▁of▁sentence|>
|
||
PARAMETER stop <|end▁of▁sentence|>
|
||
PARAMETER stop <|User|>
|
||
PARAMETER stop <|Assistant|>
|
||
PARAMETER num_ctx 16000
|
||
```
|
||
|
||
它包含多个部分,我们暂时用不着改太多,只需要注意`FROM`表明构建使用的模型(告诉Ollama用什么构建),以及`num_ctx`的值(默认4096,除非通过API请求的时候有额外设置)这里我设置的`16000`,它就是上下文长度,越长消耗的显存/内存,计算资源就越多。
|
||
|
||
> [!NOTE]
|
||
>
|
||
> 经过测试,RTX 4090差不多可以在KV Cache量化为q8_0,启用Flash Attention的情况下运行32B q4_K_M量化模型的同时,保持16K的上下文长度。如果同等情况下运行14B q4_K_M量化模型可以达到64K的上下文长度。有关KV Cache量化和Flash Attention的内容我会稍后讲解。
|
||
|
||
当我们创建好Modelfile后就可以使用如下命令创建模型了。
|
||
|
||
```bash
|
||
ollama create DeepSeek-R1-Distill-Qwen-32B-Q4_K_M -f DeepSeek-R1-Distill-Qwen-32B-Q4_K_M.txt
|
||
```
|
||
|
||
> [!TIP]
|
||
>
|
||
> 其格式如下:
|
||
> `ollama create <要创建的模型名> -f <Modelfile的路径和名字>`
|
||
|
||
在此过程中Ollama会拉取模型并且创建它,完成后可以执行`ollama list`检查模型列表,你应该会看见类似的东西。
|
||
|
||
```console
|
||
PS C:\Users\james\Desktop\Ollama> ollama list
|
||
NAME ID SIZE MODIFIED
|
||
DeepSeek-R1-Distill-Qwen-32B-Q4_K_M:latest ca51e8a9d628 19 GB 2 days ago
|
||
deepseek-r1:32b-qwen-distill-q4_K_M 5de93a84837d 19 GB 2 days ago
|
||
```
|
||
|
||
## 优化
|
||
|
||
Ollama支持多个优化参数,它们通过环境变量控制。
|
||
|
||
- `OLLAMA_FLASH_ATTENTION`:`1`开启,`0`关闭
|
||
- `OLLAMA_HOST`:Ollama监听的IP,默认是`127.0.0.1`,如果要对外服务需要改成`0.0.0.0`
|
||
- `OLLAMA_KV_CACHE_TYPE`:默认`fp16`,可以设置`q8_0`,或者`q4_0`
|
||
- `OLLAMA_NUM_PARALLEL`:同时运行的请求数,越多吞吐量越大,显存/内存消耗越多,一般`1`就差不多了
|
||
- `OLLAMA_ORIGINS`:有关CORS跨站请求的内容,如果你要在其它地方请求Ollama,特别域名不一样的话你要设置对应的域,或者设置`*`允许所有来源
|
||
|
||
Flash Attention是必开的,KV Cache我建议选`q8_0`,实测发现`q4_0`会让R1的思考长度下降,这可能是因为内容都比较长,上下文比较重要。
|
||
|
||
### Windows 11
|
||
|
||
要在Windows 11中设置环境变量,需要进入“高级系统设置”,
|
||
|
||
{{< image src="system-properties.avif" width="320px" caption="System Properties" >}}
|
||
|
||
然后选择“环境变量”,之后选择“新建”。重启Ollama使其生效。
|
||
|
||
{{< image src="environment-variables.avif" width="480px" caption="Environment Variables" >}}
|
||
|
||
### MacOS
|
||
|
||
在MacOS中可以执行诸如
|
||
|
||
```bash
|
||
launchctl setenv OLLAMA_FLASH_ATTENTION "1"
|
||
launchctl setenv OLLAMA_KV_CACHE_TYPE "q8_0"
|
||
```
|
||
|
||
的命令来设置环境变量。重启Ollama使其生效。
|
||
|
||
### Linux
|
||
|
||
在Linux中,在安装完Ollama后可以修改`ollama.service`文件来修改它的环境变量。
|
||
|
||
```bash
|
||
sudo systemctl edit ollama.service
|
||
```
|
||
|
||
然后在`[Service]`下添加`Environment`字段,类似这样
|
||
|
||
```text
|
||
[Service]
|
||
Environment="OLLAMA_FLASH_ATTENTION=1"
|
||
Environment="OLLAMA_KV_CACHE_TYPE=q8_0"
|
||
```
|
||
|
||
保存修改后重载
|
||
|
||
```bash
|
||
sudo systemctl daemon-reload
|
||
sudo systemctl restart ollama
|
||
```
|
||
|
||
## 不足
|
||
|
||
Ollama使用的后端llama.cpp并非是为了多并发和高性能的生产环境设计的。比如它对多GPU的支持就不是很理想,它会把模型的层拆分到多个GPU里,这样解决了显存不足的问题,但是这样导致在单一时间内,只有一块GPU在干活。要同时利用多张GPU的性能,我们需要张量并行,这是SGLang或者vLLM擅长的。
|
||
|
||
至于性能,在和SGLang或者vLLM对比的时候也不占优势,吞吐量远不及后者。其次对多模态模型的支持有限,适配进度缓慢。
|
||
|
||
## 客户端
|
||
|
||
为了更方便使用Ollama中的模型,我推荐两个客户端。Cherry Studio是我觉得好用的本地客户端,LobeChat是我觉得好用的云端客户端(我之前写过一篇 [使用 Docker Compose 部署 LobeChat 服务端数据库版本](../install-lobechat-db/))
|
||
|
||
{{< gh-repo-card-container >}}
|
||
{{< gh-repo-card repo="CherryHQ/cherry-studio" >}}
|
||
{{< gh-repo-card repo="lobehub/lobe-chat" >}}
|
||
{{< gh-repo-card repo="Calcium-Ion/new-api" >}}
|
||
{{< gh-repo-card repo="immersive-translate/immersive-translate" >}}
|
||
{{< /gh-repo-card-container >}}
|
||
|
||
New API则是我觉得一个很好的,用来集中管理API并且以OpenAI API格式提供服务的工具。Immersive Translate则是一个好评如潮的翻译插件,它支持调用OpenAI API来进行翻译,也自然可以与Ollama以及New API组合搭配。翻译效果远超传统翻译方法。
|