Files
CSCI-1200/lectures/21_trees_IV/README.md
Jidong Xiao f634f39d05 indentation
2025-04-02 12:43:20 -04:00

196 lines
5.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Lecture 21 --- Trees, Part IV
## Todays Lecture
- Morris Traversal
## 21.1 Morris Traversal
Morris Traversal is a tree traversal algorithm that allows in-order, pre-order, and post-order traversal of a binary tree without using recursion or a stack/queue, achieving O(1) space complexity. It modifies the tree temporarily but restores it afterward.
Instead of using extra memory (like recursion stack or an explicit stack), Morris Traversal utilizes threaded binary trees by:
- Finding the inorder predecessor of the current node.
- Temporarily modifying the tree structure by creating threads (links) to the current node.
- Using these links to traverse back instead of a recursive call.
## 21.2 Morris Traversal - In Order
- Start from the root.
- If the left subtree is NULL, print the node and move to the right.
- If the left subtree exists, find the inorder predecessor (rightmost node in the left subtree):
- If the predecessors right child is NULL, set it to the current node (threading) and move left.
- If the predecessors right child points to the current node (thread already exists), remove the thread, print the current node, and move right.
- Repeat until you traverse the entire tree.
```cpp
void inorderTraversal(TreeNode* root) {
TreeNode *current=root;
TreeNode *rightmost;
while(current!=NULL){
if(current->left!=NULL){
rightmost=current->left;
while(rightmost->right!=NULL && rightmost->right!=current){
rightmost=rightmost->right;
}
if(rightmost->right==NULL){ /* first time */
rightmost->right=current;
current=current->left;
}else{ /* second time */
std::cout << current->val << " ";
rightmost->right=NULL;
current=current->right;
}
}else{ /* nodes which do not have left child */
std::cout << current->val << " ";
current=current->right;
}
}
return;
}
```
You can test the above function using this program: [inorder_main.cpp](inorder_main.cpp).
For this test case,
![alt text](binaryTree.png "Binary Tree Test Case")
The testing program prints:
```console
$ g++ inorder_main.cpp
$ ./a.out
Inorder Traversal using Morris Traversal:
4 2 6 5 7 1 3 9 8
```
## 21.3 Morris Traversal - Pre Order
To perform preorder traversal:
Print the node before going left instead of after restoring links.
```cpp
void preorderTraversal(TreeNode* root) {
TreeNode *current=root;
TreeNode *rightmost;
while(current != nullptr){
if(current->left != nullptr){
rightmost=current->left;
while(rightmost->right!=nullptr && rightmost->right!=current){
rightmost=rightmost->right;
}
if(rightmost->right==nullptr){ /* visiting the right most node for the first time */
std::cout << current->val << " ";
rightmost->right=current;
current=current->left;
}else{ /* visiting the right most node for the second time */
rightmost->right=nullptr;
current=current->right;
}
}else{ /* nodes which do not have left child */
std::cout << current->val << " ";
current=current->right;
}
}
return;
}
```
You can test the above function using this program: [preorder_main.cpp](preorder_main.cpp).
For above test case, the testing program prints:
```console
$ g++ preorder_main.cpp
$ ./a.out
Preorder Traversal using Morris Traversal:
1 2 4 5 6 7 3 8 9
```
## 21.4 Morris Traversal - Post Order
Post order is different, and we need to write some helper functions here.
```cpp
// function to reverse the right-edge path of a subtree
TreeNode* reverse(TreeNode* head) {
TreeNode* prev = nullptr;
TreeNode* next = nullptr;
while (head != nullptr) {
next = head->right;
head->right = prev;
prev = head;
head = next;
}
return prev;
}
// function to traverse and collect nodes along a reversed right edge
void reverseTraverseRightEdge(TreeNode* head) {
TreeNode* tail = reverse(head);
TreeNode* current = tail;
while (current != nullptr) {
std::cout << current->val << " ";
current = current->right;
}
reverse(tail); // restore the original tree structure
}
// Morris Postorder Traversal
void postorderTraversal(TreeNode* root) {
TreeNode* current = root;
TreeNode* rightmost;
while (current != nullptr) {
if (current->left != nullptr) {
rightmost = current->left;
while (rightmost->right != nullptr && rightmost->right != current) {
rightmost = rightmost->right;
}
if (rightmost->right == nullptr) {
rightmost->right = current;
current = current->left;
} else {
rightmost->right = nullptr;
reverseTraverseRightEdge(current->left);
current = current->right;
}
} else {
current = current->right;
}
}
reverseTraverseRightEdge(root); // traverse the final right edge
return;
}
```
You can test the above function using this program: [postorder_main.cpp](postorder_main.cpp).
For above test case, the testing program prints:
```console
$ g++ postorder_main.cpp
$ ./a.out
Postorder Traversal using Morris Traversal:
4 6 7 5 2 9 8 3 1
```
## Time and Space Complexity in Morris Traversal (in-order, pre-order, post-order)
- Time Complexity: O(N) (each node is visited at most twice)
- Space Complexity: O(1) (no extra space used except for modifying pointers)