diff --git a/config/_default/hugo.toml b/config/_default/hugo.toml index cc28d51..0814547 100644 --- a/config/_default/hugo.toml +++ b/config/_default/hugo.toml @@ -9,7 +9,7 @@ # Hugo Configuration # See: https://gohugo.io/getting-started/configuration/ # ------------------------------------------------------------------------------------- -ignoreLogs = ['error-get-gh-repo', 'error-get-remote-json'] +#ignoreLogs = ['error-get-gh-repo', 'error-get-remote-json'] # website title title = "FlareBlog" # Hostname (and path) to the root @@ -114,6 +114,11 @@ enableEmoji = true table = true taskList = true typographer = true + [markup.goldmark.extensions.passthrough] + enable = true + [markup.goldmark.extensions.passthrough.delimiters] + block = [['\[', '\]'], ['$$', '$$']] + inline = [['\(', '\)'], ['$', '$']] # https://gohugo.io/getting-started/configuration-markup/#extras [markup.goldmark.extensions.extras] [markup.goldmark.extensions.extras.delete] diff --git a/content/en/posts/ecse-1010/lab01/index.md b/content/en/posts/ecse-1010/lab01/index.md index 2d75566..575ee8a 100644 --- a/content/en/posts/ecse-1010/lab01/index.md +++ b/content/en/posts/ecse-1010/lab01/index.md @@ -71,8 +71,8 @@ repost: We know that, the Ohm's Law, KCL, and KVL can be shown as these formulas: $$ -V = IR \\\ -\textstyle \sum I_{in} = \sum I_{out} \\\ +V = IR \\ +\textstyle \sum I_{in} = \sum I_{out} \\ \textstyle \sum V_{n} = 0 $$ @@ -82,11 +82,11 @@ Based on $V = IR$, the total $I$ should be $$ \begin{align*} - V &= IR \\\ - I &= \frac{V}{R} \\\ - I_{total} &= \frac{5}{10K + \cfrac{1}{\frac{1}{1K} + \frac{1}{1K}} + 10K} \\\ - I_{total} &= \frac{5}{10000 + 500 + 10000} \\\ - I_{total} &= 0.000243902439 \\\ + V &= IR \\ + I &= \frac{V}{R} \\ + I_{total} &= \frac{5}{10K + \cfrac{1}{\frac{1}{1K} + \frac{1}{1K}} + 10K} \\ + I_{total} &= \frac{5}{10000 + 500 + 10000} \\ + I_{total} &= 0.000243902439 \\ \end{align*} $$ @@ -94,8 +94,8 @@ And $I(R2) = I(R3)$ should be $$ \begin{align*} - I(R2) = I(R3) &= I_{total} \times \frac{R2}{R2 + R3} \\\ - I(R2) = I(R3) &= 0.000243902439 \times \frac{1000}{1000 + 1000} \\\ + I(R2) = I(R3) &= I_{total} \times \frac{R2}{R2 + R3} \\ + I(R2) = I(R3) &= 0.000243902439 \times \frac{1000}{1000 + 1000} \\ I(R2) = I(R3) &= 0.0001219512195 \end{align*} $$ @@ -106,16 +106,16 @@ To find $V(R1) = V(R4)$ and $V(R2) = V(R3)$, we can use $$ \begin{align*} - V(R1) = V(R4) &= V_{total} \times \frac{R1}{R1 + R2 \Vert R3 + R4} \\\ - V(R1) = V(R4) &= 5 \times \frac{10000}{10000 + 500 + 10000} \\\ + V(R1) = V(R4) &= V_{total} \times \frac{R1}{R1 + R2 \Vert R3 + R4} \\ + V(R1) = V(R4) &= 5 \times \frac{10000}{10000 + 500 + 10000} \\ V(R1) = V(R4) &= 2.4390244 \end{align*} $$ $$ \begin{align*} - V(R2) = V(R3) &= V_{total} \\\ - V(R2) = V(R3) &= (5 - 2.4390244 - 2.4390244) \\\ + V(R2) = V(R3) &= V_{total} \\ + V(R2) = V(R3) &= (5 - 2.4390244 - 2.4390244) \\ V(R2) = V(R3) &= 0.1219512 \end{align*} $$ @@ -187,24 +187,24 @@ and the voltage is the difference in potential. Based on that, we can calculate $$ \begin{align*} - V(R1) &= V(n001) - V(n002) \\\ - V(R1) &= 5 - 2.56098 \\\ + V(R1) &= V(n001) - V(n002) \\ + V(R1) &= 5 - 2.56098 \\ V(R1) &= \boxed{2.43902} \end{align*} $$ $$ \begin{align*} - V(R2) = V(R3) &= V(n002) - V(n003) \\\ - V(R2) = V(R3) &= 2.56098 - 2.43902 \\\ + V(R2) = V(R3) &= V(n002) - V(n003) \\ + V(R2) = V(R3) &= 2.56098 - 2.43902 \\ V(R2) = V(R3) &= \boxed{0.12196} \end{align*} $$ $$ \begin{align*} - V(R4) &= V(n003) - V(\text{GND}) \\\ - V(R4) &= 2.43902 - 0 \\\ + V(R4) &= V(n003) - V(\text{GND}) \\ + V(R4) &= 2.43902 - 0 \\ V(R4) &= \boxed{2.43902} \end{align*} $$ @@ -240,8 +240,8 @@ Using the expectation $I(R1) = I(R2) + I(R3)$ from Analysis. We can check $$ \begin{align*} - & \quad \thickspace I(R1) + I(R2) + I(R3) \\\ - &= -0.000243902 + 0.000121951 + 0.000121951 \\\ + & \quad \thickspace I(R1) + I(R2) + I(R3) \\ + &= -0.000243902 + 0.000121951 + 0.000121951 \\ &= \boxed{0} \end{align*} $$ @@ -256,8 +256,8 @@ We can use the result from previous part. $$ \begin{align*} - V(R1) &= 2.43902 \\\ - V(R2) = V(R3) &= 0.12196 \\\ + V(R1) &= 2.43902 \\ + V(R2) = V(R3) &= 0.12196 \\ V(R4) &= 2.43902 \end{align*} $$ @@ -266,9 +266,9 @@ Use the expectation $V(n001) - V(n002) - V(n003) = 0$ from Analysis. We can chec $$ \begin{align*} - & \quad \thickspace V(n001) - V(n002) - V(n003) \\\ - &= 2.43902 - 0.12196 - 0.12196 \\\ - &= 0 \\\ + & \quad \thickspace V(n001) - V(n002) - V(n003) \\ + &= 2.43902 - 0.12196 - 0.12196 \\ + &= 0 \\ & \boxed{\text{True}} \end{align*} $$ @@ -292,24 +292,24 @@ to calculate $I$ based on Ohm's Law. $$ \begin{align*} - V &= IR \\\ - I &= \frac{V}{R} \\\ + V &= IR \\ + I &= \frac{V}{R} \\ I(R1) &= \frac{2.4963}{10000} = \boxed{0.00024963} \end{align*} $$ $$ \begin{align*} - V &= IR \\\ - I &= \frac{V}{R} \\\ + V &= IR \\ + I &= \frac{V}{R} \\ I(R2) = I(R3) &= \frac{0.1665}{1000} = \boxed{0.0001665} \end{align*} $$ $$ \begin{align*} - V &= IR \\\ - I &= \frac{V}{R} \\\ + V &= IR \\ + I &= \frac{V}{R} \\ I(R4) &= \frac{2.4616}{10000} = \boxed{0.00024616} \end{align*} $$ @@ -407,16 +407,16 @@ V(n002): 2.5 voltage $$ \begin{align*} - V(R1) &= V(n001) - V(n002) \\\ - V(R1) &= 5 - 2.5 \\\ + V(R1) &= V(n001) - V(n002) \\ + V(R1) &= 5 - 2.5 \\ V(R1) &= \boxed{2.5} \end{align*} $$ $$ \begin{align*} - V(R2) &= V(n002) - \text{GND} \\\ - V(R2) &= 2.5 - 0 \\\ + V(R2) &= V(n002) - \text{GND} \\ + V(R2) &= 2.5 - 0 \\ V(R2) &= \boxed{2.5} \end{align*} $$ @@ -469,7 +469,7 @@ Also, we know that $R_1 = R_2 = 10K$ and the voltage across the resistor can be $$ \begin{align*} - \frac{V_1}{V_2} &= \frac{R_1}{R_2} \\\ + \frac{V_1}{V_2} &= \frac{R_1}{R_2} \\ \frac{V_1}{V_2} &= \frac{10K}{10K} = \frac{1}{1} \end{align*} $$ @@ -480,8 +480,8 @@ Using these values, we can find out $I(R1)$ and $I(R2)$ by $$ \begin{align*} - I(R1) = I(R2) &= \frac{V}{R} \\\ - I(R1) = I(R2) &= \frac{2.5}{10K} \\\ + I(R1) = I(R2) &= \frac{V}{R} \\ + I(R1) = I(R2) &= \frac{2.5}{10K} \\ I(R1) = I(R2) &= \boxed{0.00025} \end{align*} $$ @@ -539,16 +539,16 @@ Based on the Ohm's Law - the relationship we got in Analysis $I = \frac{V}{R}$. $$ \begin{align*} - I(R1) &= \frac{V}{R} \\\ - I(R1) &= \frac{2.5539}{10K} \\\ + I(R1) &= \frac{V}{R} \\ + I(R1) &= \frac{2.5539}{10K} \\ I(R1) &= 0.00025539 \end{align*} $$ $$ \begin{align*} - I(R2) &= \frac{V}{R} \\\ - I(R2) &= \frac{2.5204}{10K} \\\ + I(R2) &= \frac{V}{R} \\ + I(R2) &= \frac{2.5204}{10K} \\ I(R2) &= 0.00025204 \end{align*} $$ @@ -589,8 +589,8 @@ Also, the voltage is potential difference between the component. $$ \begin{align*} - V(R1) = V(R2) &= n001 - \text{GND} \\\ - V(R1) = V(R2) &= 5 - 0 \\\ + V(R1) = V(R2) &= n001 - \text{GND} \\ + V(R1) = V(R2) &= 5 - 0 \\ V(R1) = V(R2) &= \boxed{5} \end{align*} $$ @@ -637,8 +637,8 @@ Let's put values into equation $$ \begin{align*} - I_{total} &= \frac{5}{\cfrac{1}{\frac{1}{10K} + \frac{1}{10K}}} \\\ - I_{total} &= \frac{5}{5K} \\\ + I_{total} &= \frac{5}{\cfrac{1}{\frac{1}{10K} + \frac{1}{10K}}} \\ + I_{total} &= \frac{5}{5K} \\ I_{total} &= \boxed{0.001} \end{align*} $$ @@ -689,8 +689,8 @@ and the voltage is the difference in potential. Based on that, we can caculate t $$ \begin{align*} - V(R1) = V(R2) &= V(n001) - \text{GND} \\\ - V(R1) = V(R2) &= 5 - 0 \\\ + V(R1) = V(R2) &= V(n001) - \text{GND} \\ + V(R1) = V(R2) &= 5 - 0 \\ V(R1) = V(R2) &= \boxed{5} \end{align*} $$ @@ -733,9 +733,9 @@ So, we get $$ \begin{align*} - I_{total} &= I(R2) + I(R1) \\\ - I_{total} &= 0.0005 + 0.0005 \\\ - I_{total} &= 0.001 \\\ + I_{total} &= I(R2) + I(R1) \\ + I_{total} &= 0.0005 + 0.0005 \\ + I_{total} &= 0.001 \\ & 0.001 = 0.001 \\; \boxed{\text{True}} \end{align*} $$ @@ -764,9 +764,9 @@ Then, we can find out $I(R1)$ and $I(R2)$ by $$ \begin{align*} - V &= IR \\\ - I &= \frac{V}{R} \\\ - I(R1) = I(R2) &= \frac{5.0305}{10000} \\\ + V &= IR \\ + I &= \frac{V}{R} \\ + I(R1) = I(R2) &= \frac{5.0305}{10000} \\ I(R1) = I(R2) &= \boxed{0.0005305} \end{align*} $$ @@ -808,8 +808,8 @@ Also, the voltage is potential difference between the component. $$ \begin{align*} - V(R1) = V(R2) &= n001 - \text{GND} \\\ - V(R1) = V(R2) &= 5 - 0 \\\ + V(R1) = V(R2) &= n001 - \text{GND} \\ + V(R1) = V(R2) &= 5 - 0 \\ V(R1) = V(R2) &= \boxed{5} \end{align*} $$ @@ -830,16 +830,16 @@ and get $$ \begin{align*} - I(R1) &= \frac{V(R1)}{R1} \\\ - I(R1) &= \frac{5}{10K} \\\ + I(R1) &= \frac{V(R1)}{R1} \\ + I(R1) &= \frac{5}{10K} \\ I(R1) &= \boxed{0.0005} \end{align*} $$ $$ \begin{align*} - I(R2) &= \frac{V(R2)}{R2} \\\ - I(R2) &= \frac{5}{10K} \\\ + I(R2) &= \frac{V(R2)}{R2} \\ + I(R2) &= \frac{5}{10K} \\ I(R2) &= \boxed{0.0005} \end{align*} $$ @@ -848,10 +848,10 @@ the relationship between $I(R1)$ and $I(R2)$ can be express as $$ \begin{align*} - \frac{I(R1)}{I(R2)} &= \cfrac{\cfrac{V(R1)}{R1}}{\cfrac{V(R2)}{R2}} \\\ - \because V(R1) &= V(R2) \\\ - \therefore \frac{I(R1)}{I(R2)} &= \cfrac{\cfrac{\cancel{V(R1)}}{R1} \times \cfrac{1}{\cancel{V(R1)}}}{\cfrac{\cancel{V(R2)}}{R2} \times \cfrac{1}{\cancel{V(R2)}}} \\\ - \frac{I(R1)}{I(R2)} &= \frac{\frac{1}{R1}}{\frac{1}{R2}} \\\ + \frac{I(R1)}{I(R2)} &= \cfrac{\cfrac{V(R1)}{R1}}{\cfrac{V(R2)}{R2}} \\ + \because V(R1) &= V(R2) \\ + \therefore \frac{I(R1)}{I(R2)} &= \cfrac{\cfrac{\cancel{V(R1)}}{R1} \times \cfrac{1}{\cancel{V(R1)}}}{\cfrac{\cancel{V(R2)}}{R2} \times \cfrac{1}{\cancel{V(R2)}}} \\ + \frac{I(R1)}{I(R2)} &= \frac{\frac{1}{R1}}{\frac{1}{R2}} \\ &\boxed{\frac{I(R1)}{I(R2)} = \frac{R2}{R1}} \end{align*} $$ @@ -866,9 +866,9 @@ as we get the $I_{total}$ by $$ \begin{align*} - I_{total} &= \frac{V_{total}}{R_{total}} \\\ - I_{total} &= \frac{5}{\cfrac{1}{\cfrac{1}{10K} + \cfrac{1}{10K}}} \\\ - I_{total} &= \frac{5}{5K} \\\ + I_{total} &= \frac{V_{total}}{R_{total}} \\ + I_{total} &= \frac{5}{\cfrac{1}{\cfrac{1}{10K} + \cfrac{1}{10K}}} \\ + I_{total} &= \frac{5}{5K} \\ I_{total} &= 0.001 \end{align*} $$ @@ -883,8 +883,8 @@ We can get $I(R1)$ and $I(R2)$ by $$ \begin{align*} - I(R1) = I(R2) &= I_{total} \times \frac {R1}{R1 + R2} \\\ - I(R1) = I(R2) &= 0.001 \times \frac {10K}{10K + 10K} \\\ + I(R1) = I(R2) &= I_{total} \times \frac {R1}{R1 + R2} \\ + I(R1) = I(R2) &= 0.001 \times \frac {10K}{10K + 10K} \\ I(R1) = I(R2) &= \boxed{0.0005} \end{align*} $$ @@ -893,12 +893,12 @@ At this point, our logic is consistent, which $$ \begin{align*} - & \because R1 = R2 = 10K \\\ - & \because I(R1) = I(R2) = 0.0005 \\\ - & \because V(R1) = V(R2) = 5 \\\ - & \because I_{total} = I(R1) + I(R2) = 0.001 \\\ - & \because \frac{I(R1)}{I(R2)} = \frac{R2}{R1} \\\ - & \therefore I(R1) = I(R2) = I_{total} \times \frac {R1}{R1 + R2} \\\ + & \because R1 = R2 = 10K \\ + & \because I(R1) = I(R2) = 0.0005 \\ + & \because V(R1) = V(R2) = 5 \\ + & \because I_{total} = I(R1) + I(R2) = 0.001 \\ + & \because \frac{I(R1)}{I(R2)} = \frac{R2}{R1} \\ + & \therefore I(R1) = I(R2) = I_{total} \times \frac {R1}{R1 + R2} \\ \end{align*} $$ @@ -958,8 +958,8 @@ and the voltage is the difference in potential. Based on that, we can calculate $$ \begin{align*} - V(R1) = V(R2) &= V(n001) - \text{GND} \\\ - V(R1) = V(R2) &= 5 - 0 \\\ + V(R1) = V(R2) &= V(n001) - \text{GND} \\ + V(R1) = V(R2) &= 5 - 0 \\ V(R1) = V(R2) &= \boxed{5} \end{align*} $$ @@ -999,9 +999,9 @@ Then, we can find out $I(R1)$ and $I(R2)$ by $$ \begin{align*} - V &= IR \\\ - I &= \frac{V}{R} \\\ - I(R1) = I(R2) &= \frac{5.0305}{10000} \\\ + V &= IR \\ + I &= \frac{V}{R} \\ + I(R1) = I(R2) &= \frac{5.0305}{10000} \\ I(R1) = I(R2) &= \boxed{0.0005305} \end{align*} $$ @@ -1038,7 +1038,7 @@ We are going to use NTC 100K as our thermistor, and we will compare the reading NTC thermistor uses Beta formula to calculate the resistance under a specific temperature. The formula is like $$ -\frac{1}{T_1} = \frac{1}{T_0} + \frac{1}{\beta} \ln\left(\frac{R_1}{R_0}\right) \\\ +\frac{1}{T_1} = \frac{1}{T_0} + \frac{1}{\beta} \ln\left(\frac{R_1}{R_0}\right) \\ $$ We can move $R_1$ to the left side to get @@ -1054,7 +1054,7 @@ Since we want to find out the resistance of this thermistor under a specific tem The thermistor we are using is NTC 100K. Which means it has $100k \Omega$ at the reference temperature $25 \degree C$ $$ -T_0 = 298.15K \\\ +T_0 = 298.15K \\ R_0 = 100k \Omega $$ @@ -1107,7 +1107,7 @@ We used the math function in Scope with to get the temperature in $\degree C$. This is from $$ -\frac{1}{T_1} = \frac{1}{T_0} + \frac{1}{\beta} \ln\left(\frac{R_1}{R_0}\right) \\\ +\frac{1}{T_1} = \frac{1}{T_0} + \frac{1}{\beta} \ln\left(\frac{R_1}{R_0}\right) \\ $$ which $T_1$ is the temperature reading we want. diff --git a/content/en/posts/ecse-1010/lab02/index.md b/content/en/posts/ecse-1010/lab02/index.md index e1382e1..44ab95d 100644 --- a/content/en/posts/ecse-1010/lab02/index.md +++ b/content/en/posts/ecse-1010/lab02/index.md @@ -518,11 +518,11 @@ $$ Substituting known values. Given $V_A = 5$ and $V_D = 0$, the equations become: $$ -2.5V_B - V_C = 5 \\\ +2.5V_B - V_C = 5 \\ 2V_C - V_B = 0 $$ -Matrix form: $\begin{bmatrix} 2.5 & -1 \\\ -1 & 2 \end{bmatrix}$ $\begin{bmatrix} V_B \\\ V_C \end{bmatrix} =$ $\begin{bmatrix} 5 \\\ 0 \end{bmatrix}$ +Matrix form: $\begin{bmatrix} 2.5 & -1 \\ -1 & 2 \end{bmatrix}$ $\begin{bmatrix} V_B \\ V_C \end{bmatrix} =$ $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ Solve them "by hand" @@ -547,7 +547,7 @@ The solution is: 1.2500 ``` -Thus, $\begin{bmatrix} V_B \\\ V_C \end{bmatrix} =$ $\begin{bmatrix}2.5 \\\ 1.25 \end{bmatrix}$ +Thus, $\begin{bmatrix} V_B \\ V_C \end{bmatrix} =$ $\begin{bmatrix}2.5 \\ 1.25 \end{bmatrix}$ ### Simulation @@ -666,8 +666,8 @@ A non-inverted comparator has a transfer function of $$ \begin{equation*} V_{out}=\begin{cases} - \text{if} \; V_{in} < V_{ref}, V_{out} = V_s - \\\ - \text{if} \; V_{in} > V_{ref}, V_{out} = V_s + \\\ + \text{if} \; V_{in} < V_{ref}, V_{out} = V_s - \\ + \text{if} \; V_{in} > V_{ref}, V_{out} = V_s + \\ \end{cases} \end{equation*} $$ @@ -677,8 +677,8 @@ In our case, we got $$ \begin{equation*} V_{out}=\begin{cases} - \text{if} \; V_{in} < 0V, V_{out} = -5V \\\ - \text{if} \; V_{in} > 0V, V_{out} = 5V \\\ + \text{if} \; V_{in} < 0V, V_{out} = -5V \\ + \text{if} \; V_{in} > 0V, V_{out} = 5V \\ \end{cases} \end{equation*} $$ @@ -723,8 +723,8 @@ In our case, we want to use $50K \Omega$ potentiometer as the resistors, so it c $$ \begin{align*} - V_{out} &= - \frac{\cancel{50K}}{\cancel{50K}} \cdot V1 - \frac{\cancel{\cancel{50K}}}{\cancel{50K}} \cdot V2 \\\ - V_{out} &= - V1 - V2 \\\ + V_{out} &= - \frac{\cancel{50K}}{\cancel{50K}} \cdot V1 - \frac{\cancel{\cancel{50K}}}{\cancel{50K}} \cdot V2 \\ + V_{out} &= - V1 - V2 \\ \end{align*} $$ @@ -782,8 +782,8 @@ In our case, we want to use $50K \Omega$ potentiometer as the resistors, so it c $$ \begin{align*} - V_{out} &= - \frac{\cancel{50K}}{\cancel{50K}} \cdot V1 - \frac{\cancel{\cancel{50K}}}{\cancel{50K}} \cdot V2 \\\ - V_{out} &= - V1 - V2 \\\ + V_{out} &= - \frac{\cancel{50K}}{\cancel{50K}} \cdot V1 - \frac{\cancel{\cancel{50K}}}{\cancel{50K}} \cdot V2 \\ + V_{out} &= - V1 - V2 \\ \end{align*} $$ diff --git a/content/en/posts/ecse-1010/lab03/index.md b/content/en/posts/ecse-1010/lab03/index.md index 93fc570..e25bdd7 100644 --- a/content/en/posts/ecse-1010/lab03/index.md +++ b/content/en/posts/ecse-1010/lab03/index.md @@ -227,7 +227,7 @@ Plugging in the Values $$ \begin{align*} - f_c &= \frac{510}{2 \times \pi \times 0.001} \\\ + f_c &= \frac{510}{2 \times \pi \times 0.001} \\ f_c &= \frac{510}{0.00628318} \approx 81,000 \text{ Hz} \end{align*} $$ @@ -329,7 +329,7 @@ we can get the capacitance of the target LP filter. $$ \begin{align*} - 300 &= \frac{1}{2 \pi \cdot 1K \cdot C} \\\ + 300 &= \frac{1}{2 \pi \cdot 1K \cdot C} \\ C &= 5.6 \times 10^{-7} \end{align*} $$ diff --git a/content/zh-cn/posts/ecse-1010/lab01/index.md b/content/zh-cn/posts/ecse-1010/lab01/index.md index a592407..0968cb0 100644 --- a/content/zh-cn/posts/ecse-1010/lab01/index.md +++ b/content/zh-cn/posts/ecse-1010/lab01/index.md @@ -71,8 +71,8 @@ repost: 我们知道,欧姆定律、KCL 和 KVL 可以表示成以下公式: $$ -V = IR \\\ -\sum I_{in} = \sum I_{out} \\\ +V = IR \\ +\sum I_{in} = \sum I_{out} \\ \sum V_n = 0 $$ @@ -82,11 +82,11 @@ $$ $$ \begin{align*} - V &= IR \\\ - I &= \frac{V}{R} \\\ - I_{total} &= \frac{5}{10K + \cfrac{1}{\frac{1}{1K} + \frac{1}{1K}} + 10K} \\\ - I_{total} &= \frac{5}{10000 + 500 + 10000} \\\ - I_{total} &= 0.000243902439 \\\ + V &= IR \\ + I &= \frac{V}{R} \\ + I_{total} &= \frac{5}{10K + \cfrac{1}{\frac{1}{1K} + \frac{1}{1K}} + 10K} \\ + I_{total} &= \frac{5}{10000 + 500 + 10000} \\ + I_{total} &= 0.000243902439 \\ \end{align*} $$ @@ -94,8 +94,8 @@ $$ $$ \begin{align*} - I(R2) = I(R3) &= I_{total} \times \frac{R2}{R2 + R3} \\\ - I(R2) = I(R3) &= 0.000243902439 \times \frac{1000}{1000 + 1000} \\\ + I(R2) = I(R3) &= I_{total} \times \frac{R2}{R2 + R3} \\ + I(R2) = I(R3) &= 0.000243902439 \times \frac{1000}{1000 + 1000} \\ I(R2) = I(R3) &= 0.0001219512195 \end{align*} $$ @@ -106,16 +106,16 @@ $$ $$ \begin{align*} - V(R1) = V(R4) &= V_{total} \times \frac{R1}{R1 + R2 \Vert R3 + R4} \\\ - V(R1) = V(R4) &= 5 \times \frac{10000}{10000 + 500 + 10000} \\\ + V(R1) = V(R4) &= V_{total} \times \frac{R1}{R1 + R2 \Vert R3 + R4} \\ + V(R1) = V(R4) &= 5 \times \frac{10000}{10000 + 500 + 10000} \\ V(R1) = V(R4) &= 2.4390244 \end{align*} $$ $$ \begin{align*} - V(R2) = V(R3) &= V_{total} - (V(R1) + V(R4)) \\\ - V(R2) = V(R3) &= 5 - 2.4390244 - 2.4390244 \\\ + V(R2) = V(R3) &= V_{total} - (V(R1) + V(R4)) \\ + V(R2) = V(R3) &= 5 - 2.4390244 - 2.4390244 \\ V(R2) = V(R3) &= 0.1219512 \end{align*} $$ @@ -185,24 +185,24 @@ V(n003): 2.43902 voltage $$ \begin{align*} - V(R1) &= V(n001) - V(n002) \\\ - V(R1) &= 5 - 2.56098 \\\ + V(R1) &= V(n001) - V(n002) \\ + V(R1) &= 5 - 2.56098 \\ V(R1) &= \boxed{2.43902} \end{align*} $$ $$ \begin{align*} - V(R2) = V(R3) &= V(n002) - V(n003) \\\ - V(R2) = V(R3) &= 2.56098 - 2.43902 \\\ + V(R2) = V(R3) &= V(n002) - V(n003) \\ + V(R2) = V(R3) &= 2.56098 - 2.43902 \\ V(R2) = V(R3) &= \boxed{0.12196} \end{align*} $$ $$ \begin{align*} - V(R4) &= V(n003) - V(\text{GND}) \\\ - V(R4) &= 2.43902 - 0 \\\ + V(R4) &= V(n003) - V(\text{GND}) \\ + V(R4) &= 2.43902 - 0 \\ V(R4) &= \boxed{2.43902} \end{align*} $$ @@ -238,8 +238,8 @@ I(V1): -0.000243902 device_current $$ \begin{align*} - & \quad \thickspace I(R1) + I(R2) + I(R3) \\\ - &= -0.000243902 + 0.000121951 + 0.000121951 \\\ + & \quad \thickspace I(R1) + I(R2) + I(R3) \\ + &= -0.000243902 + 0.000121951 + 0.000121951 \\ &= \boxed{0} \end{align*} $$ @@ -254,8 +254,8 @@ KCL 很可能为真。 $$ \begin{align*} - V(R1) &= 2.43902 \\\ - V(R2) = V(R3) &= 0.12196 \\\ + V(R1) &= 2.43902 \\ + V(R2) = V(R3) &= 0.12196 \\ V(R4) &= 2.43902 \end{align*} $$ @@ -264,9 +264,9 @@ $$ $$ \begin{align*} - & \quad \thickspace V(n001) - V(n002) - V(n003) \\\ - &= 2.43902 - 0.12196 - 0.12196 \\\ - &= 0 \\\ + & \quad \thickspace V(n001) - V(n002) - V(n003) \\ + &= 2.43902 - 0.12196 - 0.12196 \\ + &= 0 \\ & \boxed{\text{True}} \end{align*} $$ @@ -290,24 +290,24 @@ V(R4) = 2.4616V $$ \begin{align*} - V &= IR \\\ - I &= \frac{V}{R} \\\ + V &= IR \\ + I &= \frac{V}{R} \\ I(R1) &= \frac{2.4963}{10000} = \boxed{0.00024963} \end{align*} $$ $$ \begin{align*} - V &= IR \\\ - I &= \frac{V}{R} \\\ + V &= IR \\ + I &= \frac{V}{R} \\ I(R2) = I(R3) &= \frac{0.1665}{1000} = \boxed{0.0001665} \end{align*} $$ $$ \begin{align*} - V &= IR \\\ - I &= \frac{V}{R} \\\ + V &= IR \\ + I &= \frac{V}{R} \\ I(R4) &= \frac{2.4616}{10000} = \boxed{0.00024616} \end{align*} $$ @@ -405,16 +405,16 @@ V(n002): 2.5 voltage $$ \begin{align*} - V(R1) &= V(n001) - V(n002) \\\ - V(R1) &= 5 - 2.5 \\\ + V(R1) &= V(n001) - V(n002) \\ + V(R1) &= 5 - 2.5 \\ V(R1) &= \boxed{2.5} \end{align*} $$ $$ \begin{align*} - V(R2) &= V(n002) - \text{GND} \\\ - V(R2) &= 2.5 - 0 \\\ + V(R2) &= V(n002) - \text{GND} \\ + V(R2) &= 2.5 - 0 \\ V(R2) &= \boxed{2.5} \end{align*} $$ @@ -467,7 +467,7 @@ $$ $$ \begin{align*} - \frac{V_1}{V_2} &= \frac{R_1}{R_2} \\\ + \frac{V_1}{V_2} &= \frac{R_1}{R_2} \\ \frac{V_1}{V_2} &= \frac{10K}{10K} = 1 \end{align*} $$ @@ -478,8 +478,8 @@ $$ $$ \begin{align*} - I(R1) = I(R2) &= \frac{V}{R} \\\ - I(R1) = I(R2) &= \frac{2.5}{10K} \\\ + I(R1) = I(R2) &= \frac{V}{R} \\ + I(R1) = I(R2) &= \frac{2.5}{10K} \\ I(R1) = I(R2) &= \boxed{0.00025} \end{align*} $$ @@ -537,16 +537,16 @@ $V(R2) = 2.5204V$ $$ \begin{align*} - I(R1) &= \frac{V}{R} \\\ - I(R1) &= \frac{2.5539}{10K} \\\ + I(R1) &= \frac{V}{R} \\ + I(R1) &= \frac{2.5539}{10K} \\ I(R1) &= 0.00025539 \end{align*} $$ $$ \begin{align*} - I(R2) &= \frac{V}{R} \\\ - I(R2) &= \frac{2.5204}{10K} \\\ + I(R2) &= \frac{V}{R} \\ + I(R2) &= \frac{2.5204}{10K} \\ I(R2) &= 0.00025204 \end{align*} $$ @@ -587,7 +587,7 @@ $$ $$ \begin{align*} - V(R1) = V(R2) &= 5 - 0 \\\ + V(R1) = V(R2) &= 5 - 0 \\ V(R1) = V(R2) &= \boxed{5} \end{align*} $$ @@ -634,8 +634,8 @@ $$ $$ \begin{align*} - I_{total} &= \frac{5}{\cfrac{1}{\frac{1}{10K} + \frac{1}{10K}}} \\\ - I_{total} &= \frac{5}{5K} \\\ + I_{total} &= \frac{5}{\cfrac{1}{\frac{1}{10K} + \frac{1}{10K}}} \\ + I_{total} &= \frac{5}{5K} \\ I_{total} &= \boxed{0.001} \end{align*} $$ @@ -686,7 +686,7 @@ V(n001): 5 voltage $$ \begin{align*} - V(R1) = V(R2) &= 5 - 0 \\\ + V(R1) = V(R2) &= 5 - 0 \\ V(R1) = V(R2) &= \boxed{5} \end{align*} $$ @@ -729,9 +729,9 @@ $$ $$ \begin{align*} - I_{total} &= I(R2) + I(R1) \\\ - I_{total} &= 0.0005 + 0.0005 \\\ - I_{total} &= 0.001 \\\ + I_{total} &= I(R2) + I(R1) \\ + I_{total} &= 0.0005 + 0.0005 \\ + I_{total} &= 0.001 \\ & 0.001 = 0.001 \\; \boxed{\text{True}} \end{align*} $$ @@ -760,8 +760,8 @@ R2 = 10K $$ \begin{align*} - I &= \frac{V}{R} \\\ - I(R1) = I(R2) &= \frac{5.0305}{10000} \\\ + I &= \frac{V}{R} \\ + I(R1) = I(R2) &= \frac{5.0305}{10000} \\ I(R1) = I(R2) &= \boxed{0.0005305} \end{align*} $$ @@ -803,7 +803,7 @@ $$ $$ \begin{align*} - V(R1) = V(R2) &= 5 - 0 \\\ + V(R1) = V(R2) &= 5 - 0 \\ V(R1) = V(R2) &= \boxed{5} \end{align*} $$ @@ -824,16 +824,16 @@ $$ $$ \begin{align*} - I(R1) &= \frac{V(R1)}{R1} \\\ - I(R1) &= \frac{5}{10K} \\\ + I(R1) &= \frac{V(R1)}{R1} \\ + I(R1) &= \frac{5}{10K} \\ I(R1) &= \boxed{0.0005} \end{align*} $$ $$ \begin{align*} - I(R2) &= \frac{V(R2)}{R2} \\\ - I(R2) &= \frac{5}{10K} \\\ + I(R2) &= \frac{V(R2)}{R2} \\ + I(R2) &= \frac{5}{10K} \\ I(R2) &= \boxed{0.0005} \end{align*} $$ @@ -842,10 +842,10 @@ $I(R1)$ 和 $I(R2)$ 的关系可以表示为: $$ \begin{align*} - \frac{I(R1)}{I(R2)} &= \cfrac{\cfrac{V(R1)}{R1}}{\cfrac{V(R2)}{R2}} \\\ - \because V(R1) &= V(R2) \\\ - \therefore \frac{I(R1)}{I(R2)} &= \cfrac{\cfrac{\cancel{V(R1)}}{R1} \times \cfrac{1}{\cancel{V(R1)}}}{\cfrac{\cancel{V(R2)}}{R2} \times \cfrac{1}{\cancel{V(R2)}}} \\\ - \frac{I(R1)}{I(R2)} &= \frac{\frac{1}{R1}}{\frac{1}{R2}} \\\ + \frac{I(R1)}{I(R2)} &= \cfrac{\cfrac{V(R1)}{R1}}{\cfrac{V(R2)}{R2}} \\ + \because V(R1) &= V(R2) \\ + \therefore \frac{I(R1)}{I(R2)} &= \cfrac{\cfrac{\cancel{V(R1)}}{R1} \times \cfrac{1}{\cancel{V(R1)}}}{\cfrac{\cancel{V(R2)}}{R2} \times \cfrac{1}{\cancel{V(R2)}}} \\ + \frac{I(R1)}{I(R2)} &= \frac{\frac{1}{R1}}{\frac{1}{R2}} \\ &\boxed{\frac{I(R1)}{I(R2)} = \frac{R2}{R1}} \end{align*} $$ @@ -860,9 +860,9 @@ $$ $$ \begin{align*} - I_{total} &= \frac{V_{total}}{R_{total}} \\\ - I_{total} &= \frac{5}{\cfrac{1}{\cfrac{1}{10K} + \cfrac{1}{10K}}} \\\ - I_{total} &= \frac{5}{5K} \\\ + I_{total} &= \frac{V_{total}}{R_{total}} \\ + I_{total} &= \frac{5}{\cfrac{1}{\cfrac{1}{10K} + \cfrac{1}{10K}}} \\ + I_{total} &= \frac{5}{5K} \\ I_{total} &= 0.001 \end{align*} $$ @@ -877,8 +877,8 @@ $$ $$ \begin{align*} - I(R1) = I(R2) &= I_{total} \times \frac {R1}{R1 + R2} \\\ - I(R1) = I(R2) &= 0.001 \times \frac {10K}{10K + 10K} \\\ + I(R1) = I(R2) &= I_{total} \times \frac {R1}{R1 + R2} \\ + I(R1) = I(R2) &= 0.001 \times \frac {10K}{10K + 10K} \\ I(R1) = I(R2) &= \boxed{0.0005} \end{align*} $$ @@ -887,11 +887,11 @@ $$ $$ \begin{align*} - & \because R1 = R2 = 10K \\\ - & \because I(R1) = I(R2) = 0.0005 \\\ - & \because V(R1) = V(R2) = 5 \\\ - & \because I_{total} = I(R1) + I(R2) = 0.001 \\\ - & \because \frac{I(R1)}{I(R2)} = \frac{R2}{R1} \\\ + & \because R1 = R2 = 10K \\ + & \because I(R1) = I(R2) = 0.0005 \\ + & \because V(R1) = V(R2) = 5 \\ + & \because I_{total} = I(R1) + I(R2) = 0.001 \\ + & \because \frac{I(R1)}{I(R2)} = \frac{R2}{R1} \\ & \therefore I(R1) = I(R2) = I_{total} \times \frac {R1}{R1 + R2} \end{align*} $$ @@ -952,7 +952,7 @@ V(n001): 5 voltage $$ \begin{align*} - V(R1) = V(R2) &= 5 - 0 \\\ + V(R1) = V(R2) &= 5 - 0 \\ V(R1) = V(R2) &= \boxed{5} \end{align*} $$ @@ -992,8 +992,8 @@ R2 = 10K $$ \begin{align*} - I &= \frac{V}{R} \\\ - I(R1) = I(R2) &= \frac{5.0305}{10000} \\\ + I &= \frac{V}{R} \\ + I(R1) = I(R2) &= \frac{5.0305}{10000} \\ I(R1) = I(R2) &= \boxed{0.0005305} \end{align*} $$