|
|
|
@@ -183,7 +183,7 @@ V(n002): 2.56098 voltage
|
|
|
|
V(n003): 2.43902 voltage
|
|
|
|
V(n003): 2.43902 voltage
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
and the voltage is the difference in potential. Based on that, we can caculate the theoretic values of $V(R1)$, $V(R2) = V(R3)$ and $V(R4)$.
|
|
|
|
and the voltage is the difference in potential. Based on that, we can calculate the theoretic values of $V(R1)$, $V(R2) = V(R3)$ and $V(R4)$.
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
\begin{align*}
|
|
|
|
\begin{align*}
|
|
|
|
@@ -211,7 +211,7 @@ $$
|
|
|
|
|
|
|
|
|
|
|
|
Let's make a table to compare the results
|
|
|
|
Let's make a table to compare the results
|
|
|
|
|
|
|
|
|
|
|
|
|Iteams|Analysis|Simulation|Experiement|diff|$\%$diff|
|
|
|
|
|Items|Analysis|Simulation|Experiment|diff|$\%$diff|
|
|
|
|
|:-:|:-:|:-:|:-:|:-:|-:|
|
|
|
|
|:-:|:-:|:-:|:-:|:-:|-:|
|
|
|
|
|$V(R1)$|$2.4390V$|$2.4390V$|$2.4963V$|$57.28mV$|$2.3\%$|
|
|
|
|
|$V(R1)$|$2.4390V$|$2.4390V$|$2.4963V$|$57.28mV$|$2.3\%$|
|
|
|
|
|$V(R2)$|$0.1219V$|$0.1219V$|$0.1665V$|$44.54mV$|$26.8\%$|
|
|
|
|
|$V(R2)$|$0.1219V$|$0.1219V$|$0.1665V$|$44.54mV$|$26.8\%$|
|
|
|
|
@@ -240,9 +240,9 @@ Using the expectation $I(R1) = I(R2) + I(R3)$ from Analysis. We can check
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
\begin{align*}
|
|
|
|
\begin{align*}
|
|
|
|
& I(R1) + I(R2) + I(R3) \\\
|
|
|
|
& \quad \thickspace I(R1) + I(R2) + I(R3) \\\
|
|
|
|
=& -0.000243902 + 0.000121951 + 0.000121951 \\\
|
|
|
|
&= -0.000243902 + 0.000121951 + 0.000121951 \\\
|
|
|
|
=& \; \boxed{0}
|
|
|
|
&= \boxed{0}
|
|
|
|
\end{align*}
|
|
|
|
\end{align*}
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
@@ -266,10 +266,10 @@ Use the expectation $V(n001) - V(n002) - V(n003) = 0$ from Analysis. We can chec
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
\begin{align*}
|
|
|
|
\begin{align*}
|
|
|
|
& V(n001) - V(n002) - V(n003) \\\
|
|
|
|
& \quad \thickspace V(n001) - V(n002) - V(n003) \\\
|
|
|
|
=& \; 2.43902 - 0.12196 - 0.12196\\\
|
|
|
|
&= 2.43902 - 0.12196 - 0.12196 \\\
|
|
|
|
=& \; 0 \\\
|
|
|
|
&= 0 \\\
|
|
|
|
& \; 0 = 0 \; \boxed{\text{True}}
|
|
|
|
\boxed{\text{True}}
|
|
|
|
\end{align*}
|
|
|
|
\end{align*}
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
@@ -316,7 +316,7 @@ $$
|
|
|
|
|
|
|
|
|
|
|
|
Then, we can check these current result with simulation data.
|
|
|
|
Then, we can check these current result with simulation data.
|
|
|
|
|
|
|
|
|
|
|
|
|Iteams|Analysis|Simulation|Experiement|diff|$\%$diff|
|
|
|
|
|Items|Analysis|Simulation|Experiment|diff|$\%$diff|
|
|
|
|
|:-:|:-|:-|:-|:-:|-:|
|
|
|
|
|:-:|:-|:-|:-|:-:|-:|
|
|
|
|
|$I(R1)$|$0.2439mA$|$0.2439mA$|$0.2496mA$|$0.005728mA$|$2.3\%$|
|
|
|
|
|$I(R1)$|$0.2439mA$|$0.2439mA$|$0.2496mA$|$0.005728mA$|$2.3\%$|
|
|
|
|
|$I(R2)$|$0.1665mA$|$0.1665mA$|$0.1219mA$|$0.044549mA$|$26.8\%$|
|
|
|
|
|$I(R2)$|$0.1665mA$|$0.1665mA$|$0.1219mA$|$0.044549mA$|$26.8\%$|
|
|
|
|
@@ -423,7 +423,7 @@ $$
|
|
|
|
|
|
|
|
|
|
|
|
Let's make a table to compare the results
|
|
|
|
Let's make a table to compare the results
|
|
|
|
|
|
|
|
|
|
|
|
|Iteams|Analysis|Simulation|Experiement|diff|$\%$diff|
|
|
|
|
|Items|Analysis|Simulation|Experiment|diff|$\%$diff|
|
|
|
|
|:-:|:-:|:-:|:-:|:-:|-:|
|
|
|
|
|:-:|:-:|:-:|:-:|:-:|-:|
|
|
|
|
|$V(R1)$|$2.5V$|$2.5V$|$2.5539V$|$0.0539V$|$2.1\%$|
|
|
|
|
|$V(R1)$|$2.5V$|$2.5V$|$2.5539V$|$0.0539V$|$2.1\%$|
|
|
|
|
|$V(R2)$|$2.5V$|$2.5V$|$2.5204V$|$0.0204V$|$0.8\%$|
|
|
|
|
|$V(R2)$|$2.5V$|$2.5V$|$2.5204V$|$0.0204V$|$0.8\%$|
|
|
|
|
@@ -697,7 +697,7 @@ $$
|
|
|
|
|
|
|
|
|
|
|
|
Let's make a table to compare the results
|
|
|
|
Let's make a table to compare the results
|
|
|
|
|
|
|
|
|
|
|
|
|Iteams|Analysis|Simulation|Experiement|diff|$\%$diff|
|
|
|
|
|Items|Analysis|Simulation|Experiment|diff|$\%$diff|
|
|
|
|
|:-:|:-:|:-:|:-:|:-:|-:|
|
|
|
|
|:-:|:-:|:-:|:-:|:-:|-:|
|
|
|
|
|$V(R1)$|$5V$|$5V$|$5.0305V$|$0.0305V$|$0.6\%$|
|
|
|
|
|$V(R1)$|$5V$|$5V$|$5.0305V$|$0.0305V$|$0.6\%$|
|
|
|
|
|$V(R2)$|$5V$|$5V$|$5.0305V$|$0.0305V$|$0.6\%$|
|
|
|
|
|$V(R2)$|$5V$|$5V$|$5.0305V$|$0.0305V$|$0.6\%$|
|
|
|
|
@@ -736,7 +736,7 @@ $$
|
|
|
|
I_{total} &= I(R2) + I(R1) \\\
|
|
|
|
I_{total} &= I(R2) + I(R1) \\\
|
|
|
|
I_{total} &= 0.0005 + 0.0005 \\\
|
|
|
|
I_{total} &= 0.0005 + 0.0005 \\\
|
|
|
|
I_{total} &= 0.001 \\\
|
|
|
|
I_{total} &= 0.001 \\\
|
|
|
|
& 0.001 = 0.001 \; \boxed{\text{True}}
|
|
|
|
& 0.001 = 0.001 \\; \boxed{\text{True}}
|
|
|
|
\end{align*}
|
|
|
|
\end{align*}
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
@@ -954,7 +954,7 @@ We know the simulation output is
|
|
|
|
V(n001): 5 voltage
|
|
|
|
V(n001): 5 voltage
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
and the voltage is the difference in potential. Based on that, we can caculate the theoretic values of $V(R1)$ and $V(R2)$.
|
|
|
|
and the voltage is the difference in potential. Based on that, we can calculate the theoretic values of $V(R1)$ and $V(R2)$.
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
\begin{align*}
|
|
|
|
\begin{align*}
|
|
|
|
@@ -1006,7 +1006,7 @@ $$
|
|
|
|
\end{align*}
|
|
|
|
\end{align*}
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|Iteams|Analysis|Simulation|Experiement|diff|$\%$diff|
|
|
|
|
|Items|Analysis|Simulation|Experiment|diff|$\%$diff|
|
|
|
|
|:-:|:-:|:-:|:-:|:-:|-:|
|
|
|
|
|:-:|:-:|:-:|:-:|:-:|-:|
|
|
|
|
|$I(R1)$|$0.5mA$|$0.5mA$|$0.50305mA$|$0.00305mA$|$0.6\%$|
|
|
|
|
|$I(R1)$|$0.5mA$|$0.5mA$|$0.50305mA$|$0.00305mA$|$0.6\%$|
|
|
|
|
|$I(R2)$|$0.5mA$|$0.5mA$|$0.50305mA$|$0.00305mA$|$0.6\%$|
|
|
|
|
|$I(R2)$|$0.5mA$|$0.5mA$|$0.50305mA$|$0.00305mA$|$0.6\%$|
|
|
|
|
@@ -1149,9 +1149,11 @@ The wheatstone bridge is better than a normal voltage divider because it is more
|
|
|
|
When a wheatstone bridge is balanced, meaning R1/R2=R3/R4, the current flowing through the galvanometer in the center of the wheatstone bridge is 0. When current is zero, the calculated resistance is no longer affected by innate resistance of wires, resistors, and voltameters. This allows measurements with the wheatstone bridge to be more accurate than a voltage divider.
|
|
|
|
When a wheatstone bridge is balanced, meaning R1/R2=R3/R4, the current flowing through the galvanometer in the center of the wheatstone bridge is 0. When current is zero, the calculated resistance is no longer affected by innate resistance of wires, resistors, and voltameters. This allows measurements with the wheatstone bridge to be more accurate than a voltage divider.
|
|
|
|
|
|
|
|
|
|
|
|
Advantages:
|
|
|
|
Advantages:
|
|
|
|
|
|
|
|
|
|
|
|
- Wheatstone bridge is more accurate than voltage divider
|
|
|
|
- Wheatstone bridge is more accurate than voltage divider
|
|
|
|
- Voltage source does not need to be calibrated to measure resistance
|
|
|
|
- Voltage source does not need to be calibrated to measure resistance
|
|
|
|
|
|
|
|
|
|
|
|
Disadvantages:
|
|
|
|
Disadvantages:
|
|
|
|
|
|
|
|
|
|
|
|
- Voltage divider is easier and cheaper to make
|
|
|
|
- Voltage divider is easier and cheaper to make
|
|
|
|
- Lower power consumption
|
|
|
|
- Lower power consumption
|