Files
CSCI-1200/lectures/18_trees_I/ds_set_starter.h
2025-03-20 02:06:33 -04:00

127 lines
3.4 KiB
C++

// Partial implementation of binary-tree based set class similar to std::set.
// The iterator increment & decrement operations have been omitted.
#ifndef ds_set_h_
#define ds_set_h_
#include <iostream>
#include <utility>
// -------------------------------------------------------------------
// TREE NODE CLASS
template <class T>
class TreeNode {
public:
TreeNode() : left(NULL), right(NULL) {}
TreeNode(const T& init) : value(init), left(NULL), right(NULL) {}
T value;
TreeNode* left;
TreeNode* right;
};
template <class T> class ds_set;
// -------------------------------------------------------------------
// TREE NODE ITERATOR CLASS
template <class T>
class tree_iterator {
public:
tree_iterator() : ptr_(NULL) {}
tree_iterator(TreeNode<T>* p) : ptr_(p) {}
tree_iterator(const tree_iterator& old) : ptr_(old.ptr_) {}
~tree_iterator() {}
tree_iterator& operator=(const tree_iterator& old) { ptr_ = old.ptr_; return *this; }
// operator* gives constant access to the value at the pointer
const T& operator*() const { return ptr_->value; }
// comparison operators are straightforward
bool operator==(const tree_iterator& r) { return ptr_ == r.ptr_; }
bool operator!=(const tree_iterator& r) { return ptr_ != r.ptr_; }
// increment & decrement will be discussed in Lecture 18 and Lab 11
private:
// representation
TreeNode<T>* ptr_;
};
// -------------------------------------------------------------------
// DS SET CLASS
template <class T>
class ds_set {
public:
ds_set() : root_(NULL), size_(0) {}
ds_set(const ds_set<T>& old) : size_(old.size_) {
root_ = this->copy_tree(old.root_); }
~ds_set() { this->destroy_tree(root_); root_ = NULL; }
ds_set& operator=(const ds_set<T>& old) {
if (&old != this) {
this->destroy_tree(root_);
root_ = this->copy_tree(old.root_);
size_ = old.size_;
}
return *this;
}
typedef tree_iterator<T> iterator;
int size() const { return size_; }
bool operator==(const ds_set<T>& old) const { return (old.root_ == this->root_); }
// FIND, INSERT & ERASE
iterator find(const T& key_value) { return find(key_value, root_); }
std::pair< iterator, bool > insert(T const& key_value) { return insert(key_value, root_); }
int erase(T const& key_value) { return erase(key_value, root_); }
// OUTPUT & PRINTING
friend std::ostream& operator<< (std::ostream& ostr, const ds_set<T>& s) {
s.print_in_order(ostr, s.root_);
return ostr;
}
void print_as_sideways_tree(std::ostream& ostr) const { print_as_sideways_tree(ostr, root_, 0); }
// ITERATORS
iterator begin() const {
}
iterator end() const { return iterator(NULL); }
private:
// REPRESENTATION
TreeNode<T>* root_;
int size_;
// PRIVATE HELPER FUNCTIONS
TreeNode<T>* copy_tree(TreeNode<T>* old_root) { /* Implemented in Lab 9 */ }
void destroy_tree(TreeNode<T>* p) { /* Implemented in Lecture 18 */ }
iterator find(const T& key_value, TreeNode<T>* p) {
}
std::pair<iterator,bool> insert(const T& key_value, TreeNode<T>*& p) { /* Discussed in Lecture 18 */ }
int erase(T const& key_value, TreeNode<T>* &p) { /* Implemented in Lecture 19 */ }
void print_in_order(std::ostream& ostr, const TreeNode<T>* p) const {
if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p->right);
}
}
void print_as_sideways_tree(std::ostream& ostr, const TreeNode<T>* p, int depth) const {
};
#endif