// ------------------------------------------------------------------- // TREE NODE CLASS template class TreeNode { public: TreeNode() : left(NULL), right(NULL)/*, parent(NULL)*/ {} TreeNode(const T& init) : value(init), left(NULL), right(NULL)/*, parent(NULL)*/ {} T value; TreeNode* left; TreeNode* right; // one way to allow implementation of iterator increment & decrement // TreeNode* parent; }; // ------------------------------------------------------------------- // TREE NODE ITERATOR CLASS template class tree_iterator { public: tree_iterator() : ptr_(NULL) {} tree_iterator(TreeNode* p) : ptr_(p) {} tree_iterator(const tree_iterator& old) : ptr_(old.ptr_) {} ~tree_iterator() {} tree_iterator& operator=(const tree_iterator& old) { ptr_ = old.ptr_; return *this; } // operator* gives constant access to the value at the pointer const T& operator*() const { return ptr_->value; } // comparison operators are straightforward bool operator== (const tree_iterator& rgt) { return ptr_ == rgt.ptr_; } bool operator!= (const tree_iterator& rgt) { return ptr_ != rgt.ptr_; } // increment & decrement operators tree_iterator & operator++() { /* discussed & implemented in Lecture 18 */ // if i have right subtree, find left most element of those if (ptr_->right_ != NULL) { ptr_ = ptr_->right_; while (ptr_->left != NULL) { ptr_ = ptr_->left_; } } else { //TreeNode *tmp = ptr_; // Keep going up as long as I'm my parent's right child //while (tmp->value < value ) { while (ptr_->parent && ptr_->parent_->right == ptr_) ptr_ = ptr_->parent_; } // Go up one more time ptr_ = ptr_->parent; } return *this; } tree_iterator operator++(int) { tree_iterator temp(*this); ++(*this); return temp; } tree_iterator & operator--() { /* implementation omitted */ } tree_iterator operator--(int) { tree_iterator temp(*this); --(*this); return temp; } private: // representation TreeNode* ptr_; }; // ------------------------------------------------------------------- // DS_SET CLASS template class ds_set { public: ds_set() : root_(NULL), size_(0) {} ds_set(const ds_set& old) : size_(old.size_) { root_ = this->copy_tree(old.root_,NULL); } ~ds_set() { this->destroy_tree(root_); } ds_set& operator=(const ds_set& old) { /* implementation omitted */ } typedef tree_iterator iterator; int size() const { return size_; } bool operator==(const ds_set& old) const { return (old.root_ == this->root_); } // FIND, INSERT & ERASE iterator find(const T& key_value) { return find(key_value, root_); } std::pair< iterator, bool > insert(T const& key_value) { return insert(key_value, root_); } int erase(T const& key_value) { return erase(key_value, root_); } // OUTPUT & PRINTING friend std::ostream& operator<< (std::ostream& ostr, const ds_set& s) { s.print_in_order(ostr, s.root_); return ostr; } // ITERATORS iterator begin() const { if (!root_) return iterator(NULL); TreeNode* p = root_; while (p->left) p = p->left; return iterator(p); } iterator end() const { return iterator(NULL); } private: // REPRESENTATION TreeNode* root_; int size_; // PRIVATE HELPER FUNCTIONS TreeNode* copy_tree(TreeNode* old_root) { /* Implemented in Lab 9 */ } void destroy_tree(TreeNode* p) { if (!p) return; destroy_tree(p->left); destroy_tree(p->right); delete p; } /*void destroy_tree(TreeNode* & p) { // Implemented in Lecture 19 if (!p) { p = NULL; size = 0; return; } destroy_tree(p->left); TreeNode* tmp = p->right; delete p; destroy_tree(tmp); } */ } iterator find(const T& key_value, TreeNode* p) { /* Implemented in Lecture 17 */ } std::pair insert(const T& key_value, TreeNode*& p) { // NOTE: will need revision to support & maintain parent pointers if (!p) { p = new TreeNode(key_value); this->size_++; return std::pair(iterator(p), true); } else if (key_value < p->value) return insert(key_value, p->left); else if (key_value > p->value) return insert(key_value, p->right); else return std::pair(iterator(p), false); } int erase(T const& key_value, TreeNode* &p) { /* Implemented in Lecture 19 */ } void print_in_order(std::ostream& ostr, const TreeNode* p) const { if (p) { print_in_order(ostr, p->left); ostr << p->value << "\n"; print_in_order(ostr, p->right); } } };