remove some code

This commit is contained in:
Jidong Xiao
2024-04-03 10:40:14 -04:00
parent c8f2e3a9c8
commit d716765266
14 changed files with 0 additions and 1106 deletions

Binary file not shown.

View File

@@ -1,95 +0,0 @@
// Solve the problem using separate chaining.
#include <iostream>
// this table can have at most 1024 keys
#define TABLE_SIZE 1024
class Node {
public:
int number;
Node* next;
};
// search the hash table and see if we can find this num.
bool identify(int num, Node** table){
int key = abs(num%TABLE_SIZE);
// search num in table[key];
Node* node = table[key];
while(node!=NULL){
if(node->number == num){
return true;
}
node = node->next;
}
// if not found, return false;
return false;
}
// add num into the hash table
void add(int num, Node** table){
int key = abs(num%TABLE_SIZE);
Node* node = new Node;
// insert num and index into table[key]
// if this is the first node
if(table[key]==NULL){
node->number = num;
node->next = NULL;
table[key] = node;
}else{
// if this is not the first node
node->number = num;
node->next = table[key];
table[key] = node;
}
}
int replace(int n){
int digit;
int result=0;
while(n>0){
digit = (n%10);
result += digit * digit;
n = n/10;
}
return result;
}
bool isHappy(int n) {
int newN = n;
Node* hash_table[TABLE_SIZE];
for(int i=0;i<TABLE_SIZE;i++){
hash_table[i]=NULL;
}
while(1){
newN = replace(newN);
if(newN==1){
return true;
}else{
// if we can find it, this is going to be an infinite loop
if(identify(newN, hash_table)){
return false;
}
// can't find it, push it in the map first
add(newN, hash_table);
}
}
}
int main() {
// Test cases
// 2, 4, 5, 6, 17, 18, 20 are not happy numbers.
// 1, 7, 10, 13, 19, 23, 28, 68 are not happy numbers.
int testCases[] = {2,4,5,6,17,18,20,1,7,10,13,19,23,28,68};
for (int n : testCases) {
if (isHappy(n)) {
std::cout << n << " is a happy number." << std::endl;
} else {
std::cout << n << " is not a happy number." << std::endl;
}
}
return 0;
}

View File

@@ -1,50 +0,0 @@
#include <iostream>
#include <unordered_set>
int replace(int n){
int digit;
int result=0;
while(n>0){
digit = (n%10);
result += digit * digit;
n = n/10;
}
return result;
}
bool isHappy(int n) {
int newN = n;
std::unordered_set<int> set1;
while(1){
newN = replace(newN);
if(newN==1){
return true;
}else{
// if we can find it, this is going to be an infinite loop
if(set1.find(newN)!=set1.end()){
return false;
}
// can't find it, insert it in the set first
set1.insert(newN);
}
}
}
int main() {
// Test cases
// 2, 4, 5, 6, 17, 18, 20 are not happy numbers.
// 1, 7, 10, 13, 19, 23, 28, 68 are not happy numbers.
int testCases[] = {2,4,5,6,17,18,20,1,7,10,13,19,23,28,68};
for (int n : testCases) {
if (isHappy(n)) {
std::cout << n << " is a happy number." << std::endl;
} else {
std::cout << n << " is not a happy number." << std::endl;
}
}
return 0;
}

View File

@@ -1,260 +0,0 @@
#ifndef ds_hashset_h_
#define ds_hashset_h_
// The set class as a hash table instead of a binary search tree. The
// primary external difference between ds_set and ds_hashset is that
// the iterators do not step through the hashset in any meaningful
// order. It is just the order imposed by the hash function.
#include <iostream>
#include <list>
#include <string>
#include <vector>
#include <algorithm>
// The ds_hashset is templated over both the type of key and the type
// of the hash function, a function object.
template < class KeyType, class HashFunc >
class ds_hashset {
private:
typedef typename std::list<KeyType>::iterator hash_list_itr;
public:
// =================================================================
// THE ITERATOR CLASS
// Defined as a nested class and thus is not separately templated.
class iterator {
public:
friend class ds_hashset; // allows access to private variables
private:
// ITERATOR REPRESENTATION
ds_hashset* m_hs;
int m_index; // current index in the hash table
hash_list_itr m_list_itr; // current iterator at the current index
private:
// private constructors for use by the ds_hashset only
iterator(ds_hashset * hs) : m_hs(hs), m_index(-1) {}
iterator(ds_hashset* hs, int index, hash_list_itr loc)
: m_hs(hs), m_index(index), m_list_itr(loc) {}
public:
// Ordinary constructors & assignment operator
iterator() : m_hs(0), m_index(-1) {}
iterator(iterator const& itr)
: m_hs(itr.m_hs), m_index(itr.m_index), m_list_itr(itr.m_list_itr) {}
iterator& operator=(const iterator& old) {
m_hs = old.m_hs;
m_index = old.m_index;
m_list_itr = old.m_list_itr;
return *this;
}
// The dereference operator need only worry about the current
// list iterator, and does not need to check the current index.
const KeyType& operator*() const { return *m_list_itr; }
// The comparison operators must account for the list iterators
// being unassigned at the end.
friend bool operator== (const iterator& lft, const iterator& rgt)
{ return lft.m_hs == rgt.m_hs && lft.m_index == rgt.m_index &&
(lft.m_index == -1 || lft.m_list_itr == rgt.m_list_itr); }
friend bool operator!= (const iterator& lft, const iterator& rgt)
{ return lft.m_hs != rgt.m_hs || lft.m_index != rgt.m_index ||
(lft.m_index != -1 && lft.m_list_itr != rgt.m_list_itr); }
// increment and decrement
iterator& operator++() {
this->next();
return *this;
}
iterator operator++(int) {
iterator temp(*this);
this->next();
return temp;
}
iterator & operator--() {
this->prev();
return *this;
}
iterator operator--(int) {
iterator temp(*this);
this->prev();
return temp;
}
private:
// Find the next entry in the table
void next() {
++ m_list_itr; // next item in the list
// If we are at the end of this list
if (m_list_itr == m_hs->m_table[m_index].end()) {
// Find the next non-empty list in the table
for (++m_index;
m_index < int(m_hs->m_table.size()) && m_hs->m_table[m_index].empty();
++m_index) {}
// If one is found, assign the m_list_itr to the start
if (m_index != int(m_hs->m_table.size()))
m_list_itr = m_hs->m_table[m_index].begin();
// Otherwise, we are at the end
else
m_index = -1;
}
}
// Find the previous entry in the table
void prev() {
// If we aren't at the start of the current list, just decrement
// the list iterator
if (m_list_itr != m_hs->m_table[m_index].begin())
m_list_itr -- ;
else {
// Otherwise, back down the table until the previous
// non-empty list in the table is found
for (--m_index; m_index >= 0 && m_hs->m_table[m_index].empty(); --m_index) {}
// Go to the last entry in the list.
m_list_itr = m_hs->m_table[m_index].begin();
hash_list_itr p = m_list_itr; ++p;
for (; p != m_hs->m_table[m_index].end(); ++p, ++m_list_itr) {}
}
}
};
// end of ITERATOR CLASS
// =================================================================
private:
// =================================================================
// HASH SET REPRESENTATION
std::vector< std::list<KeyType> > m_table; // actual table
HashFunc m_hash; // hash function
unsigned int m_size; // number of keys
public:
// =================================================================
// HASH SET IMPLEMENTATION
// Constructor for the table accepts the size of the table. Default
// constructor for the hash function object is implicitly used.
ds_hashset(unsigned int init_size = 10) : m_table(init_size), m_size(0) {}
// Copy constructor just uses the member function copy constructors.
ds_hashset(const ds_hashset<KeyType, HashFunc>& old)
: m_table(old.m_table), m_size(old.m_size) {}
~ds_hashset() {}
ds_hashset& operator=(const ds_hashset<KeyType,HashFunc>& old) {
if (&old != this) {
this->m_table = old.m_table;
this->m_size = old.m_size;
this->m_hash = old.m_hash;
}
return *this;
}
unsigned int size() const { return m_size; }
// Insert the key if it is not already there.
std::pair< iterator, bool > insert(KeyType const& key) {
const float LOAD_FRACTION_FOR_RESIZE = 1.25;
if (m_size >= LOAD_FRACTION_FOR_RESIZE * m_table.size())
this->resize_table(2*m_table.size()+1);
// Implement this function for Lab 11, Checkpoint 1
}
// Find the key, using hash function, indexing and list find
iterator find(const KeyType& key) {
unsigned int hash_value = m_hash(key);
unsigned int index = hash_value % m_table.size();
hash_list_itr p = std::find(m_table[index].begin(),
m_table[index].end(), key);
if (p == m_table[index].end())
return this->end();
else
return iterator(this, index, p);
}
// Erase the key
int erase(const KeyType& key) {
// Find the key and use the erase iterator function.
iterator p = find(key);
if (p == end())
return 0;
else {
erase(p);
return 1;
}
}
// Erase at the iterator
void erase(iterator p) {
m_table[ p.m_index ].erase(p.m_list_itr);
}
// Find the first entry in the table and create an associated iterator
iterator begin() {
// Implement this function for Lab 11, Checkpoint 2, Part 1
}
// Create an end iterator.
iterator end() {
iterator p(this);
p.m_index = -1;
return p;
}
// A public print utility.
void print(std::ostream & ostr) {
for (unsigned int i=0; i<m_table.size(); ++i) {
ostr << i << ": ";
for (hash_list_itr p = m_table[i].begin(); p != m_table[i].end(); ++p)
ostr << ' ' << *p;
ostr << std::endl;
}
}
private:
// resize the table with the same values but twice as many buckets
void resize_table(unsigned int new_size) {
// Implement this function for Lab 11, Checkpoint 2, Part 2
}
};
#endif

View File

@@ -1,155 +0,0 @@
#include <iostream>
#include <string>
#include <utility>
#include <cassert>
#include "ds_hashset.h"
// Wrapping a class around a function turns a function into a functor
// (We'll talk about this more in Lecture 21. You can just ignore
// this wrapper part for now.)
class hash_string_obj {
public:
// ----------------------------------------------------------
// EXPERIMENT WITH THE HASH FUNCTION FOR CHECKPOINT 1, PART 2
unsigned int operator() ( const std::string& key ) const {
// This implementation comes from
// http://www.partow.net/programming/hashfunctions/
//
// This is a general-purpose, very good hash function for strings.
unsigned int hash = 1315423911;
for(unsigned int i = 0; i < key.length(); i++)
hash ^= ((hash << 5) + key[i] + (hash >> 2));
return hash;
}
};
typedef ds_hashset<std::string, hash_string_obj> ds_hashset_type;
int main() {
// ---------------------------------
// CODE TO TEST CHECKPOINT 1, PART 1
ds_hashset_type a;
ds_hashset_type set1;
std::pair< ds_hashset_type::iterator, bool > insert_result;
std::string to_insert = std::string("hello");
insert_result = set1.insert( to_insert );
assert( insert_result.second );
insert_result = set1.insert( std::string("good-bye") );
assert( insert_result.second );
insert_result = set1.insert( std::string("friend") );
assert( insert_result.second );
insert_result = set1.insert( std::string("abc") );
assert( insert_result.second );
insert_result = set1.insert( std::string("puppy") );
assert( insert_result.second );
insert_result = set1.insert( std::string("zebra") );
assert( insert_result.second );
insert_result = set1.insert( std::string("daddy") );
assert( insert_result.second );
insert_result = set1.insert( std::string("puppy") );
assert( !insert_result.second && * insert_result.first == std::string("puppy") );
std::cout << "The set size is " << set1.size() << '\n'
<< "Here is the table: \n";
set1.print( std::cout );
ds_hashset_type::iterator p;
p = set1.find( "foo" );
if ( p == set1.end() )
std::cout << "\"foo\" is not in the set\n";
else
std::cout << "\"foo\" is in the set\n"
<< "The iterator points to " << *p << std::endl;
p = set1.find("puppy");
if ( p == set1.end() )
std::cout << "\"puppy\" is not in the set\n";
else
std::cout << "\"puppy\" is in the set\n"
<< "The iterator points to " << *p << std::endl;
p = set1.find("daddy");
if ( p == set1.end() )
std::cout << "\"daddy\" is not in the set\n";
else
std::cout << "\"daddy\" is in the set\n"
<< "The iterator points to " << *p << std::endl;
// ---------------------------------
// CODE TO TEST CHECKPOINT 2, PART 1
/*
p = set1.begin();
std::cout << "\nHere is the result of iterating: \n";
for ( p = set1.begin(); p != set1.end(); ++p )
std::cout << *p << '\n';
*/
// ---------------------------------
// CODE TO TEST CHECKPOINT 2, PART 2
/*
ds_hashset_type set2( set1 );
std::cout << "set1.size() = " << set1.size() << ", set2.size() = " << set2.size() << std::endl;
// Now add more stuff to set2. This should trigger a resize given the default settings.
insert_result = set2.insert( std::string("ardvark") );
assert( insert_result.second );
insert_result = set2.insert( std::string("baseball") );
assert( insert_result.second );
insert_result = set2.insert( std::string("football") );
assert( insert_result.second );
insert_result = set2.insert( std::string("gymnastics") );
assert( insert_result.second );
insert_result = set2.insert( std::string("dance") );
assert( insert_result.second );
insert_result = set2.insert( std::string("swimming") );
assert( insert_result.second );
insert_result = set2.insert( std::string("track") );
assert( insert_result.second );
std::cout << "\nAfter seven more inserts:\n"
<< "set1.size() = " << set1.size() << ", set2.size() = " << set2.size() << "\n"
<< "\nThe contents of set2:" << std::endl;
set2.print(std::cout);
std::cout << "The results of iterating:\n";
for ( p = set2.begin(); p != set2.end(); ++p )
std::cout << *p << '\n';
*/
// ---------------
// OTHER TEST CODE
/*
// Now test erase
int num = set2.erase( std::string("hello") );
std::cout << "Tried erase \"hello\" and got num (should be 1) = " << num << std::endl;
num = set2.erase( std::string("abc") );
std::cout << "Tried erase \"abc\" and got num (should be 1) = " << num << std::endl;
num = set2.erase( std::string("hello") );
std::cout << "Tried erase \"hello\" and got num (should be 0) = " << num << std::endl;
num = set2.erase( std::string("football") );
std::cout << "Tried erase \"football\" and got num (should be 1) = " << num << std::endl;
num = set2.erase( std::string("friend") );
std::cout << "Tried erase \"friend\" and got num (should be 1) = " << num
<< "\nHere are the final contents of set2:" << std::endl;
set2.print(std::cout);
*/
return 0;
}

Binary file not shown.

View File

@@ -1,95 +0,0 @@
// Solve the problem using separate chaining.
#include <iostream>
// this table can have at most 1024 keys
#define TABLE_SIZE 1024
class Node {
public:
int number;
Node* next;
};
// search the hash table and see if we can find this num.
bool identify(int num, Node** table){
int key = abs(num%TABLE_SIZE);
// search num in table[key];
Node* node = table[key];
while(node!=NULL){
if(node->number == num){
return true;
}
node = node->next;
}
// if not found, return false;
return false;
}
// add num into the hash table
void add(int num, Node** table){
int key = abs(num%TABLE_SIZE);
Node* node = new Node;
// insert num and index into table[key]
// if this is the first node
if(table[key]==NULL){
node->number = num;
node->next = NULL;
table[key] = node;
}else{
// if this is not the first node
node->number = num;
node->next = table[key];
table[key] = node;
}
}
int replace(int n){
int digit;
int result=0;
while(n>0){
digit = (n%10);
result += digit * digit;
n = n/10;
}
return result;
}
bool isHappy(int n) {
int newN = n;
Node* hash_table[TABLE_SIZE];
for(int i=0;i<TABLE_SIZE;i++){
hash_table[i]=NULL;
}
while(1){
newN = replace(newN);
if(newN==1){
return true;
}else{
// if we can find it, this is going to be an infinite loop
if(identify(newN, hash_table)){
return false;
}
// can't find it, push it in the map first
add(newN, hash_table);
}
}
}
int main() {
// Test cases
// 2, 4, 5, 6, 17, 18, 20 are not happy numbers.
// 1, 7, 10, 13, 19, 23, 28, 68 are not happy numbers.
int testCases[] = {2,4,5,6,17,18,20,1,7,10,13,19,23,28,68};
for (int n : testCases) {
if (isHappy(n)) {
std::cout << n << " is a happy number." << std::endl;
} else {
std::cout << n << " is not a happy number." << std::endl;
}
}
return 0;
}

Binary file not shown.

View File

@@ -1,50 +0,0 @@
#include <iostream>
#include <unordered_set>
int replace(int n){
int digit;
int result=0;
while(n>0){
digit = (n%10);
result += digit * digit;
n = n/10;
}
return result;
}
bool isHappy(int n) {
int newN = n;
std::unordered_set<int> set1;
while(1){
newN = replace(newN);
if(newN==1){
return true;
}else{
// if we can find it, this is going to be an infinite loop
if(set1.find(newN)!=set1.end()){
return false;
}
// can't find it, insert it in the set first
set1.insert(newN);
}
}
}
int main() {
// Test cases
// 2, 4, 5, 6, 17, 18, 20 are not happy numbers.
// 1, 7, 10, 13, 19, 23, 28, 68 are not happy numbers.
int testCases[] = {2,4,5,6,17,18,20,1,7,10,13,19,23,28,68};
for (int n : testCases) {
if (isHappy(n)) {
std::cout << n << " is a happy number." << std::endl;
} else {
std::cout << n << " is not a happy number." << std::endl;
}
}
return 0;
}

Binary file not shown.

View File

@@ -1,117 +0,0 @@
#include <iostream>
#include <vector>
#define TABLE_SIZE 1024
class Node{
public:
int number;
Node* next;
};
// insert num into table
void insert(int num, Node** table){
int key;
key = abs(num%TABLE_SIZE); // key will be something in between 0 and (TABLE_SIZE-1); num can be negative
if(table[key] == nullptr){
// create the first node for this linked list
Node* node;
node = new Node;
node->number = num;
node->next = nullptr;
table[key] = node;
}else{
// insert a node to the beginning of this linked list
Node* node;
node = new Node;
node->number = num;
node->next = table[key];
table[key] = node;
}
}
// search the hash table and see if we can find this num.
bool identify(int num, Node** table){
int key = abs(num%TABLE_SIZE);
// search num in table[key];
Node* node = table[key];
while(node != nullptr){
if(node->number == num){
return true;
}
node = node->next;
}
// if not found, return false;
return false;
}
// Question: why is this an O(n) solution when we have a nested loop? Because the inner while loop will only be used if *itr1 is the beginning of the sequence, which means each element will only be visited 2 or 3 times.
int longestConsecutive(std::vector<int>& nums) {
int len=0;
Node* hash_table[TABLE_SIZE];
// initialize the table
for(int i=0;i<TABLE_SIZE;i++){
hash_table[i] = nullptr;
}
int size = nums.size();
if(size == 0){
return 0;
}
// store unique elements in nums in set1
for(int i=0;i<nums.size();i++){
insert(nums[i], hash_table);
}
int i=0;
Node* current = hash_table[i];
// if we reach here, then there is at least one Node in the hash table.
// find the first non-NULL Node.
while(current == nullptr){
i++;
current = hash_table[i];
}
// traverse the hash table
while(current!=nullptr){
// if (current->num-1) can't be found
if(identify(current->number - 1, hash_table)){
int x = current->number + 1;
// now that current->num is the beginning of a sequence, how about current->num + 1?
while(identify(x, hash_table)){
x++;
}
// when we get out of the above while loop, it's time to update len, if needed.
if( (x - current->number) > len){
len = x - current->number;
}
}
current = current->next;
// we still need a while here, rather than an if.
// so that we can find the next non-empty bucket.
while(current == nullptr){
i++;
if(i<TABLE_SIZE){
// move to the next bucket
current = hash_table[i];
}else{
// this means we have visited every element in the whole hash table.
break;
}
}
}
return len;
}
int main() {
//std::vector<int> nums = {100, 4, 200, 1, 3, 2};
std::vector<int> nums = {0,3,7,2,5,8,4,6,0,1};
//std::vector<int> nums = {100, 4, 200, 201, 202, 203, 205, 204, 1, 3, 2};
int size = nums.size();
std::cout<< "for vector {";
for(int i=0;i<size-1;i++){
std::cout<< nums[i] << ",";
}
std::cout<< nums[size-1] << "}" <<std::endl;
int length = longestConsecutive(nums);
std::cout << "The length of the longest consecutive sequence is: " << length << std::endl;
return 0;
}

View File

@@ -1,45 +0,0 @@
#include <iostream>
#include <vector>
#include <unordered_set>
// Question: why is this an O(n) solution when we have a nested loop? Because the inner while loop will only be used if *itr1 is the beginning of the sequence, which means each element will only be visited 2 or 3 times.
int longestConsecutive(std::vector<int>& nums) {
int len=0;
std::unordered_set<int> set1;
int size = nums.size();
// store unique elements in nums in set1
for(int i=0;i<nums.size();i++){
set1.insert(nums[i]);
}
std::unordered_set<int>::iterator itr1 = set1.begin();
while(itr1!=set1.end()){
// clearly *itr1 is in the set, because that's the meaning of iteration; and if *itr1-1 is not in the set, then we know *itr1 is the beginning of a sequence.
if(!set1.count(*itr1-1)){
int x = *itr1+1;
// now that *itr1 is the beginning of a sequence, how about *itr1+1?
while(set1.count(x)){
x++;
}
if(x-*itr1>len){
len = x-*itr1;
}
}
itr1++;
}
return len;
}
int main() {
//std::vector<int> nums = {100, 4, 200, 1, 3, 2};
std::vector<int> nums = {0,3,7,2,5,8,4,6,0,1};
//std::vector<int> nums = {100, 4, 200, 201, 202, 203, 205, 204, 1, 3, 2};
int size = nums.size();
std::cout<< "for vector {";
for(int i=0;i<size-1;i++){
std::cout<< nums[i] << ",";
}
std::cout<< nums[size-1] << "}" <<std::endl;
int length = longestConsecutive(nums);
std::cout << "The length of the longest consecutive sequence is: " << length << std::endl;
return 0;
}

View File

@@ -1,119 +0,0 @@
#include <iostream>
#include <vector>
#define TABLE_SIZE 1024
class Node{
public:
int number;
Node* next;
};
// insert num into table
void insert(int num, Node** table){
int key;
key = abs(num%TABLE_SIZE); // key will be something in between 0 and (TABLE_SIZE-1); num can be negative
if(table[key] == nullptr){
// create the first node for this linked list
Node* node;
node = new Node;
node->number = num;
node->next = nullptr;
table[key] = node;
}else{
// insert a node to the beginning of this linked list
Node* node;
node = new Node;
node->number = num;
node->next = table[key];
table[key] = node;
}
}
// search the hash table and see if we can find this num.
bool identify(int num, Node** table){
int key = abs(num%TABLE_SIZE);
// search num in table[key];
Node* node = table[key];
while(node != nullptr){
if(node->number == num){
return true;
}
node = node->next;
}
// if not found, return false;
return false;
}
// Question: why is this an O(n) solution when we have a nested loop? Because the inner while loop will only be used if *itr1 is the beginning of the sequence, which means each element will only be visited 2 or 3 times.
int longestConsecutive(std::vector<int>& nums) {
int len=0;
Node* hash_table[TABLE_SIZE];
// initialize the table
for(int i=0;i<TABLE_SIZE;i++){
hash_table[i] = nullptr;
}
int size = nums.size();
if(size == 0){
return 0;
}
// store unique elements in nums in set1
for(int i=0;i<nums.size();i++){
insert(nums[i], hash_table);
}
int i=0;
Node* current = hash_table[i];
// if we reach here, then there is at least one Node in the hash table.
// find the first non-NULL Node.
while(current == nullptr){
i++;
current = hash_table[i];
}
// traverse the hash table
while(current!=nullptr){
// if (current->num-1) can't be found
if(!identify(current->number - 1, hash_table)){
int x = current->number + 1;
// now that current->num is the beginning of a sequence, how about current->num + 1?
while(identify(x, hash_table)){
x++;
}
// when we get out of the above while loop, it's time to update len, if needed.
if( (x - current->number) > len){
len = x - current->number;
}
}
current = current->next;
// we still need a while here, rather than an if.
// so that we can find the next non-empty bucket.
while(current == nullptr){
i++;
if(i<TABLE_SIZE){
// move to the next bucket
current = hash_table[i];
}else{
// this means we have visited every element in the whole hash table.
break;
}
}
}
return len;
}
int main() {
//std::vector<int> nums = {100, 4, 200, 1, 3, 2};
std::vector<int> nums = {100, 4, 200, 1, 3, 2, 2, 2, 2, 3};
//std::vector<int> nums = {100, 4, 200, 1, 3, 2, 5, 6};
//std::vector<int> nums = {0,3,7,2,5,8,4,6,0,1};
//std::vector<int> nums = {100, 4, 200, 201, 202, 203, 205, 204, 1, 3, 2};
int size = nums.size();
std::cout<< "for vector {";
for(int i=0;i<size-1;i++){
std::cout<< nums[i] << ",";
}
std::cout<< nums[size-1] << "}" <<std::endl;
int length = longestConsecutive(nums);
std::cout << "The length of the longest consecutive sequence is: " << length << std::endl;
return 0;
}

View File

@@ -1,120 +0,0 @@
#include <iostream>
#include <vector>
#define TABLE_SIZE 1024
class Node{
public:
int number;
Node* next;
};
// insert num into table
void insert(int num, Node** table){
int key;
key = abs(num%TABLE_SIZE); // key will be something in between 0 and (TABLE_SIZE-1); num can be negative
if(table[key] == nullptr){
// create the first node for this linked list
Node* node;
node = new Node;
node->number = num;
node->next = nullptr;
table[key] = node;
}else{
// insert a node to the beginning of this linked list
Node* node;
node = new Node;
node->number = num;
node->next = table[key];
table[key] = node;
}
}
// search the hash table and see if we can find this num.
bool identify(int num, Node** table){
int key = abs(num%TABLE_SIZE);
// search num in table[key];
Node* node = table[key];
while(node != nullptr){
if(node->number == num){
return true;
}
node = node->next;
}
// if not found, return false;
return false;
}
// Question: why is this an O(n) solution when we have a nested loop? Because the inner while loop will only be used if *itr1 is the beginning of the sequence, which means each element will only be visited 2 or 3 times.
int longestConsecutive(std::vector<int>& nums) {
int len=0;
Node* hash_table[TABLE_SIZE];
// initialize the table
for(int i=0;i<TABLE_SIZE;i++){
hash_table[i] = nullptr;
}
int size = nums.size();
if(size == 0){
return 0;
}
// store unique elements in nums in set1
for(int i=0;i<nums.size();i++){
insert(nums[i], hash_table);
}
int i=0;
Node* current = hash_table[i];
// if we reach here, then there is at least one Node in the hash table.
// find the first non-NULL Node.
while(current == nullptr){
i++;
current = hash_table[i];
}
// traverse the hash table
while(current!=nullptr){
// if (current->num-1) can't be found
if(!identify(current->number - 1, hash_table)){
int x = current->number + 1;
// now that current->num is the beginning of a sequence, how about current->num + 1?
while(identify(x, hash_table)){
x++;
}
// when we get out of the above while loop, it's time to update len, if needed.
if( (x - current->number) > len){
len = x - current->number;
}
}
current = current->next;
// we still need a while here, rather than an if.
// so that we can find the next non-empty bucket.
while(current == nullptr){
i++;
if(i<TABLE_SIZE){
// move to the next bucket
current = hash_table[i];
}else{
// this means we have visited every element in the whole hash table.
break;
}
}
}
return len;
}
int main() {
//std::vector<int> nums = {100, 4, 200, 1, 3, 2};
//std::vector<int> nums = {100, 4, 200, 1, 3, 2, 2, 2, 2, 3};
//std::vector<int> nums = {100, 4, 200, 1, 3, 2, 5, 6};
//std::vector<int> nums = {0,3,7,2,5,8,4,6,0,1};
//std::vector<int> nums = {100, 4, 200, 201, 202, 203, 205, 204, 1, 3, 2};
std::vector<int> nums = {-3,0,1,2,3,-2,-1,-5};
int size = nums.size();
std::cout<< "for vector {";
for(int i=0;i<size-1;i++){
std::cout<< nums[i] << ",";
}
std::cout<< nums[size-1] << "}" <<std::endl;
int length = longestConsecutive(nums);
std::cout << "The length of the longest consecutive sequence is: " << length << std::endl;
return 0;
}