remove some code
This commit is contained in:
Binary file not shown.
@@ -1,95 +0,0 @@
|
||||
// Solve the problem using separate chaining.
|
||||
|
||||
#include <iostream>
|
||||
|
||||
// this table can have at most 1024 keys
|
||||
#define TABLE_SIZE 1024
|
||||
|
||||
class Node {
|
||||
public:
|
||||
int number;
|
||||
Node* next;
|
||||
};
|
||||
|
||||
// search the hash table and see if we can find this num.
|
||||
bool identify(int num, Node** table){
|
||||
int key = abs(num%TABLE_SIZE);
|
||||
// search num in table[key];
|
||||
Node* node = table[key];
|
||||
while(node!=NULL){
|
||||
if(node->number == num){
|
||||
return true;
|
||||
}
|
||||
node = node->next;
|
||||
}
|
||||
// if not found, return false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// add num into the hash table
|
||||
void add(int num, Node** table){
|
||||
int key = abs(num%TABLE_SIZE);
|
||||
Node* node = new Node;
|
||||
// insert num and index into table[key]
|
||||
// if this is the first node
|
||||
if(table[key]==NULL){
|
||||
node->number = num;
|
||||
node->next = NULL;
|
||||
table[key] = node;
|
||||
}else{
|
||||
// if this is not the first node
|
||||
node->number = num;
|
||||
node->next = table[key];
|
||||
table[key] = node;
|
||||
}
|
||||
}
|
||||
|
||||
int replace(int n){
|
||||
int digit;
|
||||
int result=0;
|
||||
while(n>0){
|
||||
digit = (n%10);
|
||||
result += digit * digit;
|
||||
n = n/10;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool isHappy(int n) {
|
||||
int newN = n;
|
||||
Node* hash_table[TABLE_SIZE];
|
||||
for(int i=0;i<TABLE_SIZE;i++){
|
||||
hash_table[i]=NULL;
|
||||
}
|
||||
while(1){
|
||||
newN = replace(newN);
|
||||
if(newN==1){
|
||||
return true;
|
||||
}else{
|
||||
// if we can find it, this is going to be an infinite loop
|
||||
if(identify(newN, hash_table)){
|
||||
return false;
|
||||
}
|
||||
// can't find it, push it in the map first
|
||||
add(newN, hash_table);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
// Test cases
|
||||
// 2, 4, 5, 6, 17, 18, 20 are not happy numbers.
|
||||
// 1, 7, 10, 13, 19, 23, 28, 68 are not happy numbers.
|
||||
|
||||
int testCases[] = {2,4,5,6,17,18,20,1,7,10,13,19,23,28,68};
|
||||
|
||||
for (int n : testCases) {
|
||||
if (isHappy(n)) {
|
||||
std::cout << n << " is a happy number." << std::endl;
|
||||
} else {
|
||||
std::cout << n << " is not a happy number." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,50 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <unordered_set>
|
||||
|
||||
int replace(int n){
|
||||
int digit;
|
||||
int result=0;
|
||||
while(n>0){
|
||||
digit = (n%10);
|
||||
result += digit * digit;
|
||||
n = n/10;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool isHappy(int n) {
|
||||
int newN = n;
|
||||
std::unordered_set<int> set1;
|
||||
while(1){
|
||||
newN = replace(newN);
|
||||
if(newN==1){
|
||||
return true;
|
||||
}else{
|
||||
// if we can find it, this is going to be an infinite loop
|
||||
if(set1.find(newN)!=set1.end()){
|
||||
return false;
|
||||
}
|
||||
// can't find it, insert it in the set first
|
||||
set1.insert(newN);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
// Test cases
|
||||
// 2, 4, 5, 6, 17, 18, 20 are not happy numbers.
|
||||
// 1, 7, 10, 13, 19, 23, 28, 68 are not happy numbers.
|
||||
|
||||
int testCases[] = {2,4,5,6,17,18,20,1,7,10,13,19,23,28,68};
|
||||
|
||||
for (int n : testCases) {
|
||||
if (isHappy(n)) {
|
||||
std::cout << n << " is a happy number." << std::endl;
|
||||
} else {
|
||||
std::cout << n << " is not a happy number." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,260 +0,0 @@
|
||||
#ifndef ds_hashset_h_
|
||||
#define ds_hashset_h_
|
||||
// The set class as a hash table instead of a binary search tree. The
|
||||
// primary external difference between ds_set and ds_hashset is that
|
||||
// the iterators do not step through the hashset in any meaningful
|
||||
// order. It is just the order imposed by the hash function.
|
||||
#include <iostream>
|
||||
#include <list>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
// The ds_hashset is templated over both the type of key and the type
|
||||
// of the hash function, a function object.
|
||||
template < class KeyType, class HashFunc >
|
||||
class ds_hashset {
|
||||
private:
|
||||
typedef typename std::list<KeyType>::iterator hash_list_itr;
|
||||
|
||||
public:
|
||||
// =================================================================
|
||||
// THE ITERATOR CLASS
|
||||
// Defined as a nested class and thus is not separately templated.
|
||||
|
||||
class iterator {
|
||||
public:
|
||||
friend class ds_hashset; // allows access to private variables
|
||||
private:
|
||||
|
||||
// ITERATOR REPRESENTATION
|
||||
ds_hashset* m_hs;
|
||||
int m_index; // current index in the hash table
|
||||
hash_list_itr m_list_itr; // current iterator at the current index
|
||||
|
||||
private:
|
||||
// private constructors for use by the ds_hashset only
|
||||
iterator(ds_hashset * hs) : m_hs(hs), m_index(-1) {}
|
||||
iterator(ds_hashset* hs, int index, hash_list_itr loc)
|
||||
: m_hs(hs), m_index(index), m_list_itr(loc) {}
|
||||
|
||||
public:
|
||||
// Ordinary constructors & assignment operator
|
||||
iterator() : m_hs(0), m_index(-1) {}
|
||||
iterator(iterator const& itr)
|
||||
: m_hs(itr.m_hs), m_index(itr.m_index), m_list_itr(itr.m_list_itr) {}
|
||||
iterator& operator=(const iterator& old) {
|
||||
m_hs = old.m_hs;
|
||||
m_index = old.m_index;
|
||||
m_list_itr = old.m_list_itr;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// The dereference operator need only worry about the current
|
||||
// list iterator, and does not need to check the current index.
|
||||
const KeyType& operator*() const { return *m_list_itr; }
|
||||
|
||||
// The comparison operators must account for the list iterators
|
||||
// being unassigned at the end.
|
||||
friend bool operator== (const iterator& lft, const iterator& rgt)
|
||||
{ return lft.m_hs == rgt.m_hs && lft.m_index == rgt.m_index &&
|
||||
(lft.m_index == -1 || lft.m_list_itr == rgt.m_list_itr); }
|
||||
friend bool operator!= (const iterator& lft, const iterator& rgt)
|
||||
{ return lft.m_hs != rgt.m_hs || lft.m_index != rgt.m_index ||
|
||||
(lft.m_index != -1 && lft.m_list_itr != rgt.m_list_itr); }
|
||||
// increment and decrement
|
||||
iterator& operator++() {
|
||||
this->next();
|
||||
return *this;
|
||||
}
|
||||
iterator operator++(int) {
|
||||
iterator temp(*this);
|
||||
this->next();
|
||||
return temp;
|
||||
}
|
||||
iterator & operator--() {
|
||||
this->prev();
|
||||
return *this;
|
||||
}
|
||||
iterator operator--(int) {
|
||||
iterator temp(*this);
|
||||
this->prev();
|
||||
return temp;
|
||||
}
|
||||
|
||||
private:
|
||||
// Find the next entry in the table
|
||||
void next() {
|
||||
++ m_list_itr; // next item in the list
|
||||
|
||||
// If we are at the end of this list
|
||||
if (m_list_itr == m_hs->m_table[m_index].end()) {
|
||||
// Find the next non-empty list in the table
|
||||
for (++m_index;
|
||||
m_index < int(m_hs->m_table.size()) && m_hs->m_table[m_index].empty();
|
||||
++m_index) {}
|
||||
|
||||
// If one is found, assign the m_list_itr to the start
|
||||
if (m_index != int(m_hs->m_table.size()))
|
||||
m_list_itr = m_hs->m_table[m_index].begin();
|
||||
|
||||
// Otherwise, we are at the end
|
||||
else
|
||||
m_index = -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Find the previous entry in the table
|
||||
void prev() {
|
||||
// If we aren't at the start of the current list, just decrement
|
||||
// the list iterator
|
||||
if (m_list_itr != m_hs->m_table[m_index].begin())
|
||||
m_list_itr -- ;
|
||||
|
||||
else {
|
||||
// Otherwise, back down the table until the previous
|
||||
// non-empty list in the table is found
|
||||
for (--m_index; m_index >= 0 && m_hs->m_table[m_index].empty(); --m_index) {}
|
||||
|
||||
// Go to the last entry in the list.
|
||||
m_list_itr = m_hs->m_table[m_index].begin();
|
||||
hash_list_itr p = m_list_itr; ++p;
|
||||
for (; p != m_hs->m_table[m_index].end(); ++p, ++m_list_itr) {}
|
||||
}
|
||||
}
|
||||
};
|
||||
// end of ITERATOR CLASS
|
||||
// =================================================================
|
||||
private:
|
||||
// =================================================================
|
||||
// HASH SET REPRESENTATION
|
||||
std::vector< std::list<KeyType> > m_table; // actual table
|
||||
HashFunc m_hash; // hash function
|
||||
unsigned int m_size; // number of keys
|
||||
|
||||
public:
|
||||
// =================================================================
|
||||
// HASH SET IMPLEMENTATION
|
||||
|
||||
// Constructor for the table accepts the size of the table. Default
|
||||
// constructor for the hash function object is implicitly used.
|
||||
ds_hashset(unsigned int init_size = 10) : m_table(init_size), m_size(0) {}
|
||||
|
||||
// Copy constructor just uses the member function copy constructors.
|
||||
ds_hashset(const ds_hashset<KeyType, HashFunc>& old)
|
||||
: m_table(old.m_table), m_size(old.m_size) {}
|
||||
|
||||
~ds_hashset() {}
|
||||
|
||||
ds_hashset& operator=(const ds_hashset<KeyType,HashFunc>& old) {
|
||||
if (&old != this) {
|
||||
this->m_table = old.m_table;
|
||||
this->m_size = old.m_size;
|
||||
this->m_hash = old.m_hash;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
unsigned int size() const { return m_size; }
|
||||
|
||||
|
||||
// Insert the key if it is not already there.
|
||||
std::pair< iterator, bool > insert(KeyType const& key) {
|
||||
const float LOAD_FRACTION_FOR_RESIZE = 1.25;
|
||||
|
||||
if (m_size >= LOAD_FRACTION_FOR_RESIZE * m_table.size())
|
||||
this->resize_table(2*m_table.size()+1);
|
||||
|
||||
// Implement this function for Lab 11, Checkpoint 1
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
// Find the key, using hash function, indexing and list find
|
||||
iterator find(const KeyType& key) {
|
||||
unsigned int hash_value = m_hash(key);
|
||||
unsigned int index = hash_value % m_table.size();
|
||||
hash_list_itr p = std::find(m_table[index].begin(),
|
||||
m_table[index].end(), key);
|
||||
if (p == m_table[index].end())
|
||||
return this->end();
|
||||
else
|
||||
return iterator(this, index, p);
|
||||
}
|
||||
// Erase the key
|
||||
int erase(const KeyType& key) {
|
||||
// Find the key and use the erase iterator function.
|
||||
iterator p = find(key);
|
||||
if (p == end())
|
||||
return 0;
|
||||
else {
|
||||
erase(p);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Erase at the iterator
|
||||
void erase(iterator p) {
|
||||
m_table[ p.m_index ].erase(p.m_list_itr);
|
||||
}
|
||||
|
||||
// Find the first entry in the table and create an associated iterator
|
||||
iterator begin() {
|
||||
|
||||
// Implement this function for Lab 11, Checkpoint 2, Part 1
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
// Create an end iterator.
|
||||
iterator end() {
|
||||
iterator p(this);
|
||||
p.m_index = -1;
|
||||
return p;
|
||||
}
|
||||
|
||||
// A public print utility.
|
||||
void print(std::ostream & ostr) {
|
||||
for (unsigned int i=0; i<m_table.size(); ++i) {
|
||||
ostr << i << ": ";
|
||||
for (hash_list_itr p = m_table[i].begin(); p != m_table[i].end(); ++p)
|
||||
ostr << ' ' << *p;
|
||||
ostr << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
// resize the table with the same values but twice as many buckets
|
||||
void resize_table(unsigned int new_size) {
|
||||
|
||||
// Implement this function for Lab 11, Checkpoint 2, Part 2
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
};
|
||||
#endif
|
||||
@@ -1,155 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <cassert>
|
||||
|
||||
#include "ds_hashset.h"
|
||||
|
||||
|
||||
// Wrapping a class around a function turns a function into a functor
|
||||
// (We'll talk about this more in Lecture 21. You can just ignore
|
||||
// this wrapper part for now.)
|
||||
class hash_string_obj {
|
||||
public:
|
||||
|
||||
// ----------------------------------------------------------
|
||||
// EXPERIMENT WITH THE HASH FUNCTION FOR CHECKPOINT 1, PART 2
|
||||
|
||||
unsigned int operator() ( const std::string& key ) const {
|
||||
// This implementation comes from
|
||||
// http://www.partow.net/programming/hashfunctions/
|
||||
//
|
||||
// This is a general-purpose, very good hash function for strings.
|
||||
unsigned int hash = 1315423911;
|
||||
for(unsigned int i = 0; i < key.length(); i++)
|
||||
hash ^= ((hash << 5) + key[i] + (hash >> 2));
|
||||
return hash;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
typedef ds_hashset<std::string, hash_string_obj> ds_hashset_type;
|
||||
|
||||
|
||||
int main() {
|
||||
|
||||
// ---------------------------------
|
||||
// CODE TO TEST CHECKPOINT 1, PART 1
|
||||
ds_hashset_type a;
|
||||
ds_hashset_type set1;
|
||||
std::pair< ds_hashset_type::iterator, bool > insert_result;
|
||||
|
||||
std::string to_insert = std::string("hello");
|
||||
insert_result = set1.insert( to_insert );
|
||||
assert( insert_result.second );
|
||||
|
||||
insert_result = set1.insert( std::string("good-bye") );
|
||||
assert( insert_result.second );
|
||||
|
||||
insert_result = set1.insert( std::string("friend") );
|
||||
assert( insert_result.second );
|
||||
|
||||
insert_result = set1.insert( std::string("abc") );
|
||||
assert( insert_result.second );
|
||||
|
||||
insert_result = set1.insert( std::string("puppy") );
|
||||
assert( insert_result.second );
|
||||
|
||||
insert_result = set1.insert( std::string("zebra") );
|
||||
assert( insert_result.second );
|
||||
|
||||
insert_result = set1.insert( std::string("daddy") );
|
||||
assert( insert_result.second );
|
||||
|
||||
insert_result = set1.insert( std::string("puppy") );
|
||||
assert( !insert_result.second && * insert_result.first == std::string("puppy") );
|
||||
|
||||
std::cout << "The set size is " << set1.size() << '\n'
|
||||
<< "Here is the table: \n";
|
||||
set1.print( std::cout );
|
||||
|
||||
ds_hashset_type::iterator p;
|
||||
p = set1.find( "foo" );
|
||||
if ( p == set1.end() )
|
||||
std::cout << "\"foo\" is not in the set\n";
|
||||
else
|
||||
std::cout << "\"foo\" is in the set\n"
|
||||
<< "The iterator points to " << *p << std::endl;
|
||||
|
||||
p = set1.find("puppy");
|
||||
if ( p == set1.end() )
|
||||
std::cout << "\"puppy\" is not in the set\n";
|
||||
else
|
||||
std::cout << "\"puppy\" is in the set\n"
|
||||
<< "The iterator points to " << *p << std::endl;
|
||||
|
||||
p = set1.find("daddy");
|
||||
if ( p == set1.end() )
|
||||
std::cout << "\"daddy\" is not in the set\n";
|
||||
else
|
||||
std::cout << "\"daddy\" is in the set\n"
|
||||
<< "The iterator points to " << *p << std::endl;
|
||||
|
||||
|
||||
// ---------------------------------
|
||||
// CODE TO TEST CHECKPOINT 2, PART 1
|
||||
/*
|
||||
p = set1.begin();
|
||||
std::cout << "\nHere is the result of iterating: \n";
|
||||
for ( p = set1.begin(); p != set1.end(); ++p )
|
||||
std::cout << *p << '\n';
|
||||
*/
|
||||
|
||||
|
||||
// ---------------------------------
|
||||
// CODE TO TEST CHECKPOINT 2, PART 2
|
||||
/*
|
||||
ds_hashset_type set2( set1 );
|
||||
std::cout << "set1.size() = " << set1.size() << ", set2.size() = " << set2.size() << std::endl;
|
||||
|
||||
// Now add more stuff to set2. This should trigger a resize given the default settings.
|
||||
insert_result = set2.insert( std::string("ardvark") );
|
||||
assert( insert_result.second );
|
||||
insert_result = set2.insert( std::string("baseball") );
|
||||
assert( insert_result.second );
|
||||
insert_result = set2.insert( std::string("football") );
|
||||
assert( insert_result.second );
|
||||
insert_result = set2.insert( std::string("gymnastics") );
|
||||
assert( insert_result.second );
|
||||
insert_result = set2.insert( std::string("dance") );
|
||||
assert( insert_result.second );
|
||||
insert_result = set2.insert( std::string("swimming") );
|
||||
assert( insert_result.second );
|
||||
insert_result = set2.insert( std::string("track") );
|
||||
assert( insert_result.second );
|
||||
|
||||
std::cout << "\nAfter seven more inserts:\n"
|
||||
<< "set1.size() = " << set1.size() << ", set2.size() = " << set2.size() << "\n"
|
||||
<< "\nThe contents of set2:" << std::endl;
|
||||
set2.print(std::cout);
|
||||
std::cout << "The results of iterating:\n";
|
||||
for ( p = set2.begin(); p != set2.end(); ++p )
|
||||
std::cout << *p << '\n';
|
||||
*/
|
||||
|
||||
// ---------------
|
||||
// OTHER TEST CODE
|
||||
/*
|
||||
// Now test erase
|
||||
int num = set2.erase( std::string("hello") );
|
||||
std::cout << "Tried erase \"hello\" and got num (should be 1) = " << num << std::endl;
|
||||
num = set2.erase( std::string("abc") );
|
||||
std::cout << "Tried erase \"abc\" and got num (should be 1) = " << num << std::endl;
|
||||
num = set2.erase( std::string("hello") );
|
||||
std::cout << "Tried erase \"hello\" and got num (should be 0) = " << num << std::endl;
|
||||
num = set2.erase( std::string("football") );
|
||||
std::cout << "Tried erase \"football\" and got num (should be 1) = " << num << std::endl;
|
||||
num = set2.erase( std::string("friend") );
|
||||
std::cout << "Tried erase \"friend\" and got num (should be 1) = " << num
|
||||
<< "\nHere are the final contents of set2:" << std::endl;
|
||||
set2.print(std::cout);
|
||||
*/
|
||||
|
||||
return 0;
|
||||
}
|
||||
Binary file not shown.
@@ -1,95 +0,0 @@
|
||||
// Solve the problem using separate chaining.
|
||||
|
||||
#include <iostream>
|
||||
|
||||
// this table can have at most 1024 keys
|
||||
#define TABLE_SIZE 1024
|
||||
|
||||
class Node {
|
||||
public:
|
||||
int number;
|
||||
Node* next;
|
||||
};
|
||||
|
||||
// search the hash table and see if we can find this num.
|
||||
bool identify(int num, Node** table){
|
||||
int key = abs(num%TABLE_SIZE);
|
||||
// search num in table[key];
|
||||
Node* node = table[key];
|
||||
while(node!=NULL){
|
||||
if(node->number == num){
|
||||
return true;
|
||||
}
|
||||
node = node->next;
|
||||
}
|
||||
// if not found, return false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// add num into the hash table
|
||||
void add(int num, Node** table){
|
||||
int key = abs(num%TABLE_SIZE);
|
||||
Node* node = new Node;
|
||||
// insert num and index into table[key]
|
||||
// if this is the first node
|
||||
if(table[key]==NULL){
|
||||
node->number = num;
|
||||
node->next = NULL;
|
||||
table[key] = node;
|
||||
}else{
|
||||
// if this is not the first node
|
||||
node->number = num;
|
||||
node->next = table[key];
|
||||
table[key] = node;
|
||||
}
|
||||
}
|
||||
|
||||
int replace(int n){
|
||||
int digit;
|
||||
int result=0;
|
||||
while(n>0){
|
||||
digit = (n%10);
|
||||
result += digit * digit;
|
||||
n = n/10;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool isHappy(int n) {
|
||||
int newN = n;
|
||||
Node* hash_table[TABLE_SIZE];
|
||||
for(int i=0;i<TABLE_SIZE;i++){
|
||||
hash_table[i]=NULL;
|
||||
}
|
||||
while(1){
|
||||
newN = replace(newN);
|
||||
if(newN==1){
|
||||
return true;
|
||||
}else{
|
||||
// if we can find it, this is going to be an infinite loop
|
||||
if(identify(newN, hash_table)){
|
||||
return false;
|
||||
}
|
||||
// can't find it, push it in the map first
|
||||
add(newN, hash_table);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
// Test cases
|
||||
// 2, 4, 5, 6, 17, 18, 20 are not happy numbers.
|
||||
// 1, 7, 10, 13, 19, 23, 28, 68 are not happy numbers.
|
||||
|
||||
int testCases[] = {2,4,5,6,17,18,20,1,7,10,13,19,23,28,68};
|
||||
|
||||
for (int n : testCases) {
|
||||
if (isHappy(n)) {
|
||||
std::cout << n << " is a happy number." << std::endl;
|
||||
} else {
|
||||
std::cout << n << " is not a happy number." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
Binary file not shown.
@@ -1,50 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <unordered_set>
|
||||
|
||||
int replace(int n){
|
||||
int digit;
|
||||
int result=0;
|
||||
while(n>0){
|
||||
digit = (n%10);
|
||||
result += digit * digit;
|
||||
n = n/10;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool isHappy(int n) {
|
||||
int newN = n;
|
||||
std::unordered_set<int> set1;
|
||||
while(1){
|
||||
newN = replace(newN);
|
||||
if(newN==1){
|
||||
return true;
|
||||
}else{
|
||||
// if we can find it, this is going to be an infinite loop
|
||||
if(set1.find(newN)!=set1.end()){
|
||||
return false;
|
||||
}
|
||||
// can't find it, insert it in the set first
|
||||
set1.insert(newN);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
// Test cases
|
||||
// 2, 4, 5, 6, 17, 18, 20 are not happy numbers.
|
||||
// 1, 7, 10, 13, 19, 23, 28, 68 are not happy numbers.
|
||||
|
||||
int testCases[] = {2,4,5,6,17,18,20,1,7,10,13,19,23,28,68};
|
||||
|
||||
for (int n : testCases) {
|
||||
if (isHappy(n)) {
|
||||
std::cout << n << " is a happy number." << std::endl;
|
||||
} else {
|
||||
std::cout << n << " is not a happy number." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Binary file not shown.
@@ -1,117 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#define TABLE_SIZE 1024
|
||||
|
||||
class Node{
|
||||
public:
|
||||
int number;
|
||||
Node* next;
|
||||
};
|
||||
|
||||
// insert num into table
|
||||
void insert(int num, Node** table){
|
||||
int key;
|
||||
key = abs(num%TABLE_SIZE); // key will be something in between 0 and (TABLE_SIZE-1); num can be negative
|
||||
if(table[key] == nullptr){
|
||||
// create the first node for this linked list
|
||||
Node* node;
|
||||
node = new Node;
|
||||
node->number = num;
|
||||
node->next = nullptr;
|
||||
table[key] = node;
|
||||
}else{
|
||||
// insert a node to the beginning of this linked list
|
||||
Node* node;
|
||||
node = new Node;
|
||||
node->number = num;
|
||||
node->next = table[key];
|
||||
table[key] = node;
|
||||
}
|
||||
}
|
||||
|
||||
// search the hash table and see if we can find this num.
|
||||
bool identify(int num, Node** table){
|
||||
int key = abs(num%TABLE_SIZE);
|
||||
// search num in table[key];
|
||||
Node* node = table[key];
|
||||
while(node != nullptr){
|
||||
if(node->number == num){
|
||||
return true;
|
||||
}
|
||||
node = node->next;
|
||||
}
|
||||
// if not found, return false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Question: why is this an O(n) solution when we have a nested loop? Because the inner while loop will only be used if *itr1 is the beginning of the sequence, which means each element will only be visited 2 or 3 times.
|
||||
int longestConsecutive(std::vector<int>& nums) {
|
||||
int len=0;
|
||||
Node* hash_table[TABLE_SIZE];
|
||||
// initialize the table
|
||||
for(int i=0;i<TABLE_SIZE;i++){
|
||||
hash_table[i] = nullptr;
|
||||
}
|
||||
int size = nums.size();
|
||||
if(size == 0){
|
||||
return 0;
|
||||
}
|
||||
// store unique elements in nums in set1
|
||||
for(int i=0;i<nums.size();i++){
|
||||
insert(nums[i], hash_table);
|
||||
}
|
||||
|
||||
int i=0;
|
||||
Node* current = hash_table[i];
|
||||
// if we reach here, then there is at least one Node in the hash table.
|
||||
// find the first non-NULL Node.
|
||||
while(current == nullptr){
|
||||
i++;
|
||||
current = hash_table[i];
|
||||
}
|
||||
// traverse the hash table
|
||||
while(current!=nullptr){
|
||||
// if (current->num-1) can't be found
|
||||
if(identify(current->number - 1, hash_table)){
|
||||
int x = current->number + 1;
|
||||
// now that current->num is the beginning of a sequence, how about current->num + 1?
|
||||
while(identify(x, hash_table)){
|
||||
x++;
|
||||
}
|
||||
// when we get out of the above while loop, it's time to update len, if needed.
|
||||
if( (x - current->number) > len){
|
||||
len = x - current->number;
|
||||
}
|
||||
}
|
||||
current = current->next;
|
||||
// we still need a while here, rather than an if.
|
||||
// so that we can find the next non-empty bucket.
|
||||
while(current == nullptr){
|
||||
i++;
|
||||
if(i<TABLE_SIZE){
|
||||
// move to the next bucket
|
||||
current = hash_table[i];
|
||||
}else{
|
||||
// this means we have visited every element in the whole hash table.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
int main() {
|
||||
//std::vector<int> nums = {100, 4, 200, 1, 3, 2};
|
||||
std::vector<int> nums = {0,3,7,2,5,8,4,6,0,1};
|
||||
//std::vector<int> nums = {100, 4, 200, 201, 202, 203, 205, 204, 1, 3, 2};
|
||||
int size = nums.size();
|
||||
std::cout<< "for vector {";
|
||||
for(int i=0;i<size-1;i++){
|
||||
std::cout<< nums[i] << ",";
|
||||
}
|
||||
std::cout<< nums[size-1] << "}" <<std::endl;
|
||||
int length = longestConsecutive(nums);
|
||||
std::cout << "The length of the longest consecutive sequence is: " << length << std::endl;
|
||||
return 0;
|
||||
}
|
||||
@@ -1,45 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <unordered_set>
|
||||
|
||||
// Question: why is this an O(n) solution when we have a nested loop? Because the inner while loop will only be used if *itr1 is the beginning of the sequence, which means each element will only be visited 2 or 3 times.
|
||||
int longestConsecutive(std::vector<int>& nums) {
|
||||
int len=0;
|
||||
std::unordered_set<int> set1;
|
||||
int size = nums.size();
|
||||
// store unique elements in nums in set1
|
||||
for(int i=0;i<nums.size();i++){
|
||||
set1.insert(nums[i]);
|
||||
}
|
||||
std::unordered_set<int>::iterator itr1 = set1.begin();
|
||||
while(itr1!=set1.end()){
|
||||
// clearly *itr1 is in the set, because that's the meaning of iteration; and if *itr1-1 is not in the set, then we know *itr1 is the beginning of a sequence.
|
||||
if(!set1.count(*itr1-1)){
|
||||
int x = *itr1+1;
|
||||
// now that *itr1 is the beginning of a sequence, how about *itr1+1?
|
||||
while(set1.count(x)){
|
||||
x++;
|
||||
}
|
||||
if(x-*itr1>len){
|
||||
len = x-*itr1;
|
||||
}
|
||||
}
|
||||
itr1++;
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
int main() {
|
||||
//std::vector<int> nums = {100, 4, 200, 1, 3, 2};
|
||||
std::vector<int> nums = {0,3,7,2,5,8,4,6,0,1};
|
||||
//std::vector<int> nums = {100, 4, 200, 201, 202, 203, 205, 204, 1, 3, 2};
|
||||
int size = nums.size();
|
||||
std::cout<< "for vector {";
|
||||
for(int i=0;i<size-1;i++){
|
||||
std::cout<< nums[i] << ",";
|
||||
}
|
||||
std::cout<< nums[size-1] << "}" <<std::endl;
|
||||
int length = longestConsecutive(nums);
|
||||
std::cout << "The length of the longest consecutive sequence is: " << length << std::endl;
|
||||
return 0;
|
||||
}
|
||||
@@ -1,119 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#define TABLE_SIZE 1024
|
||||
|
||||
class Node{
|
||||
public:
|
||||
int number;
|
||||
Node* next;
|
||||
};
|
||||
|
||||
// insert num into table
|
||||
void insert(int num, Node** table){
|
||||
int key;
|
||||
key = abs(num%TABLE_SIZE); // key will be something in between 0 and (TABLE_SIZE-1); num can be negative
|
||||
if(table[key] == nullptr){
|
||||
// create the first node for this linked list
|
||||
Node* node;
|
||||
node = new Node;
|
||||
node->number = num;
|
||||
node->next = nullptr;
|
||||
table[key] = node;
|
||||
}else{
|
||||
// insert a node to the beginning of this linked list
|
||||
Node* node;
|
||||
node = new Node;
|
||||
node->number = num;
|
||||
node->next = table[key];
|
||||
table[key] = node;
|
||||
}
|
||||
}
|
||||
|
||||
// search the hash table and see if we can find this num.
|
||||
bool identify(int num, Node** table){
|
||||
int key = abs(num%TABLE_SIZE);
|
||||
// search num in table[key];
|
||||
Node* node = table[key];
|
||||
while(node != nullptr){
|
||||
if(node->number == num){
|
||||
return true;
|
||||
}
|
||||
node = node->next;
|
||||
}
|
||||
// if not found, return false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Question: why is this an O(n) solution when we have a nested loop? Because the inner while loop will only be used if *itr1 is the beginning of the sequence, which means each element will only be visited 2 or 3 times.
|
||||
int longestConsecutive(std::vector<int>& nums) {
|
||||
int len=0;
|
||||
Node* hash_table[TABLE_SIZE];
|
||||
// initialize the table
|
||||
for(int i=0;i<TABLE_SIZE;i++){
|
||||
hash_table[i] = nullptr;
|
||||
}
|
||||
int size = nums.size();
|
||||
if(size == 0){
|
||||
return 0;
|
||||
}
|
||||
// store unique elements in nums in set1
|
||||
for(int i=0;i<nums.size();i++){
|
||||
insert(nums[i], hash_table);
|
||||
}
|
||||
|
||||
int i=0;
|
||||
Node* current = hash_table[i];
|
||||
// if we reach here, then there is at least one Node in the hash table.
|
||||
// find the first non-NULL Node.
|
||||
while(current == nullptr){
|
||||
i++;
|
||||
current = hash_table[i];
|
||||
}
|
||||
// traverse the hash table
|
||||
while(current!=nullptr){
|
||||
// if (current->num-1) can't be found
|
||||
if(!identify(current->number - 1, hash_table)){
|
||||
int x = current->number + 1;
|
||||
// now that current->num is the beginning of a sequence, how about current->num + 1?
|
||||
while(identify(x, hash_table)){
|
||||
x++;
|
||||
}
|
||||
// when we get out of the above while loop, it's time to update len, if needed.
|
||||
if( (x - current->number) > len){
|
||||
len = x - current->number;
|
||||
}
|
||||
}
|
||||
current = current->next;
|
||||
// we still need a while here, rather than an if.
|
||||
// so that we can find the next non-empty bucket.
|
||||
while(current == nullptr){
|
||||
i++;
|
||||
if(i<TABLE_SIZE){
|
||||
// move to the next bucket
|
||||
current = hash_table[i];
|
||||
}else{
|
||||
// this means we have visited every element in the whole hash table.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
int main() {
|
||||
//std::vector<int> nums = {100, 4, 200, 1, 3, 2};
|
||||
std::vector<int> nums = {100, 4, 200, 1, 3, 2, 2, 2, 2, 3};
|
||||
//std::vector<int> nums = {100, 4, 200, 1, 3, 2, 5, 6};
|
||||
//std::vector<int> nums = {0,3,7,2,5,8,4,6,0,1};
|
||||
//std::vector<int> nums = {100, 4, 200, 201, 202, 203, 205, 204, 1, 3, 2};
|
||||
int size = nums.size();
|
||||
std::cout<< "for vector {";
|
||||
for(int i=0;i<size-1;i++){
|
||||
std::cout<< nums[i] << ",";
|
||||
}
|
||||
std::cout<< nums[size-1] << "}" <<std::endl;
|
||||
int length = longestConsecutive(nums);
|
||||
std::cout << "The length of the longest consecutive sequence is: " << length << std::endl;
|
||||
return 0;
|
||||
}
|
||||
@@ -1,120 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#define TABLE_SIZE 1024
|
||||
|
||||
class Node{
|
||||
public:
|
||||
int number;
|
||||
Node* next;
|
||||
};
|
||||
|
||||
// insert num into table
|
||||
void insert(int num, Node** table){
|
||||
int key;
|
||||
key = abs(num%TABLE_SIZE); // key will be something in between 0 and (TABLE_SIZE-1); num can be negative
|
||||
if(table[key] == nullptr){
|
||||
// create the first node for this linked list
|
||||
Node* node;
|
||||
node = new Node;
|
||||
node->number = num;
|
||||
node->next = nullptr;
|
||||
table[key] = node;
|
||||
}else{
|
||||
// insert a node to the beginning of this linked list
|
||||
Node* node;
|
||||
node = new Node;
|
||||
node->number = num;
|
||||
node->next = table[key];
|
||||
table[key] = node;
|
||||
}
|
||||
}
|
||||
|
||||
// search the hash table and see if we can find this num.
|
||||
bool identify(int num, Node** table){
|
||||
int key = abs(num%TABLE_SIZE);
|
||||
// search num in table[key];
|
||||
Node* node = table[key];
|
||||
while(node != nullptr){
|
||||
if(node->number == num){
|
||||
return true;
|
||||
}
|
||||
node = node->next;
|
||||
}
|
||||
// if not found, return false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Question: why is this an O(n) solution when we have a nested loop? Because the inner while loop will only be used if *itr1 is the beginning of the sequence, which means each element will only be visited 2 or 3 times.
|
||||
int longestConsecutive(std::vector<int>& nums) {
|
||||
int len=0;
|
||||
Node* hash_table[TABLE_SIZE];
|
||||
// initialize the table
|
||||
for(int i=0;i<TABLE_SIZE;i++){
|
||||
hash_table[i] = nullptr;
|
||||
}
|
||||
int size = nums.size();
|
||||
if(size == 0){
|
||||
return 0;
|
||||
}
|
||||
// store unique elements in nums in set1
|
||||
for(int i=0;i<nums.size();i++){
|
||||
insert(nums[i], hash_table);
|
||||
}
|
||||
|
||||
int i=0;
|
||||
Node* current = hash_table[i];
|
||||
// if we reach here, then there is at least one Node in the hash table.
|
||||
// find the first non-NULL Node.
|
||||
while(current == nullptr){
|
||||
i++;
|
||||
current = hash_table[i];
|
||||
}
|
||||
// traverse the hash table
|
||||
while(current!=nullptr){
|
||||
// if (current->num-1) can't be found
|
||||
if(!identify(current->number - 1, hash_table)){
|
||||
int x = current->number + 1;
|
||||
// now that current->num is the beginning of a sequence, how about current->num + 1?
|
||||
while(identify(x, hash_table)){
|
||||
x++;
|
||||
}
|
||||
// when we get out of the above while loop, it's time to update len, if needed.
|
||||
if( (x - current->number) > len){
|
||||
len = x - current->number;
|
||||
}
|
||||
}
|
||||
current = current->next;
|
||||
// we still need a while here, rather than an if.
|
||||
// so that we can find the next non-empty bucket.
|
||||
while(current == nullptr){
|
||||
i++;
|
||||
if(i<TABLE_SIZE){
|
||||
// move to the next bucket
|
||||
current = hash_table[i];
|
||||
}else{
|
||||
// this means we have visited every element in the whole hash table.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
int main() {
|
||||
//std::vector<int> nums = {100, 4, 200, 1, 3, 2};
|
||||
//std::vector<int> nums = {100, 4, 200, 1, 3, 2, 2, 2, 2, 3};
|
||||
//std::vector<int> nums = {100, 4, 200, 1, 3, 2, 5, 6};
|
||||
//std::vector<int> nums = {0,3,7,2,5,8,4,6,0,1};
|
||||
//std::vector<int> nums = {100, 4, 200, 201, 202, 203, 205, 204, 1, 3, 2};
|
||||
std::vector<int> nums = {-3,0,1,2,3,-2,-1,-5};
|
||||
int size = nums.size();
|
||||
std::cout<< "for vector {";
|
||||
for(int i=0;i<size-1;i++){
|
||||
std::cout<< nums[i] << ",";
|
||||
}
|
||||
std::cout<< nums[size-1] << "}" <<std::endl;
|
||||
int length = longestConsecutive(nums);
|
||||
std::cout << "The length of the longest consecutive sequence is: " << length << std::endl;
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user