add solution for hw 5

This commit is contained in:
JamesFlare1212
2025-03-12 10:00:49 -04:00
parent c20ce7c2c3
commit 903e76ef1f
6 changed files with 772 additions and 326 deletions

View File

@@ -1,15 +1,12 @@
#include "Matrix.h"
#include <iostream>
#include <iomanip>
//helper function to allocate memory for a matrix of size r x c and fill it with "fill"
void Matrix::allocateMemory(unsigned int r, unsigned int c, double fill) {
if(r == 0 || c == 0) {
rows = 0;
cols = 0;
data = nullptr;
return;
}
//-------------------------
// Private Helper Functions
//-------------------------
// Allocates memory for an r x c matrix and fills every element with 'fill'
void Matrix::allocate(unsigned int r, unsigned int c, double fill) {
rows = r;
cols = c;
data = new double*[rows];
@@ -21,149 +18,180 @@ void Matrix::allocateMemory(unsigned int r, unsigned int c, double fill) {
}
}
//helper function to deallocate memory
void Matrix::deallocateMemory() {
if(data != nullptr) {
// Deallocates the memory used by the matrix
void Matrix::deallocate() {
if (data) {
for (unsigned int i = 0; i < rows; i++) {
delete [] data[i];
}
delete [] data;
data = nullptr;
}
data = nullptr;
rows = 0;
cols = 0;
}
//default constructor: creates an empty 0 x 0 matrix
Matrix::Matrix() : rows(0), cols(0), data(nullptr) { }
//-------------------------
// Constructors & Destructor
//-------------------------
//parameterized constructor
// Default constructor: creates an empty matrix (0 x 0)
Matrix::Matrix() : rows(0), cols(0), data(nullptr) {}
// Parameterized constructor: creates an r x c matrix filled with 'fill'
// If either dimension is 0, an empty matrix is created.
Matrix::Matrix(unsigned int r, unsigned int c, double fill) : rows(0), cols(0), data(nullptr) {
allocateMemory(r, c, fill);
if (r == 0 || c == 0) {
// Create an empty matrix.
rows = 0;
cols = 0;
data = nullptr;
} else {
allocate(r, c, fill);
}
}
//copy constructor
Matrix::Matrix(const Matrix& other) : rows(0), cols(0), data(nullptr) {
allocateMemory(other.rows, other.cols, 0.0);
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
data[i][j] = other.data[i][j];
// Copy constructor
Matrix::Matrix(const Matrix &other) : rows(0), cols(0), data(nullptr) {
if (other.rows == 0 || other.cols == 0) {
rows = 0;
cols = 0;
data = nullptr;
} else {
allocate(other.rows, other.cols, 0.0);
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
data[i][j] = other.data[i][j];
}
}
}
}
//destructor
// Destructor
Matrix::~Matrix() {
deallocateMemory();
deallocate();
}
//assignment operator
Matrix& Matrix::operator=(const Matrix& other) {
// Assignment operator
Matrix& Matrix::operator=(const Matrix &other) {
if (this == &other)
return *this;
deallocateMemory();
allocateMemory(other.rows, other.cols, 0.0);
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
data[i][j] = other.data[i][j];
deallocate();
if (other.rows == 0 || other.cols == 0) {
rows = 0;
cols = 0;
data = nullptr;
} else {
allocate(other.rows, other.cols, 0.0);
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
data[i][j] = other.data[i][j];
}
}
}
return *this;
}
//returns the number of rows
//-------------------------
// Dimension Accessors & Clear
//-------------------------
unsigned int Matrix::num_rows() const {
return rows;
}
//returns the number of columns
unsigned int Matrix::num_cols() const {
return cols;
}
//clears the matrix by deallocating its memory
void Matrix::clear() {
deallocateMemory();
deallocate();
}
//-------------------------
// Safe Accessors & Modifiers
//-------------------------
// get(): If (row,col) is within bounds, set value and return true; otherwise, return false.
bool Matrix::get(unsigned int row, unsigned int col, double &value) const {
if(row >= rows || col >= cols) {
if (row >= rows || col >= cols)
return false;
}
value = data[row][col];
return true;
}
//modifier
// set(): If (row,col) is valid, assign value and return true; else return false.
bool Matrix::set(unsigned int row, unsigned int col, double value) {
if(row >= rows || col >= cols) {
if (row >= rows || col >= cols)
return false;
}
data[row][col] = value;
return true;
}
//equality operator
bool Matrix::operator==(const Matrix& other) const {
//two matrices are equal if dimensions match
//and every element is equal within a small epsilon
if(rows != other.rows || cols != other.cols)
return false;
//-------------------------
// Simple Matrix Operations
//-------------------------
// Multiplies every element in the matrix by the given coefficient.
void Matrix::multiply_by_coefficient(double coefficient) {
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
if (fabs(data[i][j] - other.data[i][j]) > 1e-10)
return false;
}
}
return true;
}
bool Matrix::operator!=(const Matrix& other) const {
return !(*this == other);
}
//multiplies every element by the given coefficient
void Matrix::multiply_by_coefficient(double coeff) {
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
data[i][j] *= coeff;
data[i][j] *= coefficient;
}
}
}
//swaps two rows of the matrix (by swapping the row pointers)
// Swaps the entire contents of row1 and row2 if both indices are valid.
bool Matrix::swap_row(unsigned int row1, unsigned int row2) {
if(row1 >= rows || row2 >= rows) {
if (row1 >= rows || row2 >= rows)
return false;
}
double* temp = data[row1];
data[row1] = data[row2];
data[row2] = temp;
return true;
}
//transposes the matrix in place
// Transposes the matrix in place.
// For non-square matrices, a new 2D array is allocated, the contents are transposed,
// and the old memory is deallocated.
void Matrix::transpose() {
if(rows == 0 || cols == 0)
if (rows == 0 || cols == 0)
return;
unsigned int newRows = cols;
unsigned int newCols = rows;
double** newData = new double*[newRows];
for (unsigned int i = 0; i < newRows; i++) {
newData[i] = new double[newCols];
for (unsigned int j = 0; j < newCols; j++) {
newData[i][j] = data[j][i];
// Allocate new array with swapped dimensions.
double** newData = new double*[cols];
for (unsigned int i = 0; i < cols; i++) {
newData[i] = new double[rows];
}
// Transpose: newData[j][i] becomes data[i][j]
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
newData[j][i] = data[i][j];
}
}
deallocateMemory();
rows = newRows;
cols = newCols;
// Free old data.
for (unsigned int i = 0; i < rows; i++) {
delete [] data[i];
}
delete [] data;
// Swap dimensions.
unsigned int temp = rows;
rows = cols;
cols = temp;
data = newData;
}
//adds another matrix to this one element-wise
bool Matrix::add(const Matrix& other) {
if(rows != other.rows || cols != other.cols)
//-------------------------
// Binary Matrix Operations
//-------------------------
// Adds the corresponding elements of other to this matrix.
// Returns true if dimensions match, else returns false.
bool Matrix::add(const Matrix &other) {
if (rows != other.rows || cols != other.cols)
return false;
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
@@ -173,9 +201,10 @@ bool Matrix::add(const Matrix& other) {
return true;
}
//subtracts another matrix from this one element-wise
bool Matrix::subtract(const Matrix& other) {
if(rows != other.rows || cols != other.cols)
// Subtracts the corresponding elements of other from this matrix.
// Returns true if dimensions match, else returns false.
bool Matrix::subtract(const Matrix &other) {
if (rows != other.rows || cols != other.cols)
return false;
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
@@ -185,11 +214,15 @@ bool Matrix::subtract(const Matrix& other) {
return true;
}
//returns a dynamically allocated copy of the specified row
//caller must delete[] the returned array
//-------------------------
// Advanced Accessors
//-------------------------
// Returns a new dynamically allocated array containing the requested row.
// Returns nullptr if the row index is out of bounds.
double* Matrix::get_row(unsigned int row) const {
if(row >= rows)
return NULL;
if (row >= rows)
return nullptr;
double* rowArray = new double[cols];
for (unsigned int j = 0; j < cols; j++) {
rowArray[j] = data[row][j];
@@ -197,11 +230,11 @@ double* Matrix::get_row(unsigned int row) const {
return rowArray;
}
//returns a dynamically allocated copy of the specified column
//caller must delete[] the returned array
// Returns a new dynamically allocated array containing the requested column.
// Returns nullptr if the column index is out of bounds.
double* Matrix::get_col(unsigned int col) const {
if(col >= cols)
return NULL;
if (col >= cols)
return nullptr;
double* colArray = new double[rows];
for (unsigned int i = 0; i < rows; i++) {
colArray[i] = data[i][col];
@@ -209,84 +242,102 @@ double* Matrix::get_col(unsigned int col) const {
return colArray;
}
//divides the matrix into four quadrants and returns a pointer to an array of four matrices
//each quadrant size = ceil(rows/2) x ceil(cols/2)
//-------------------------
// Quarter Operation
//-------------------------
// Splits the matrix into four quadrants (UL, UR, LL, LR) and returns them in a new array.
// All four quadrants will have the same dimensions.
// If the matrix has fewer than 2 rows or 2 columns, returns four empty matrices.
Matrix* Matrix::quarter() const {
if (rows == 0 || cols == 0) {
return nullptr;
Matrix* quadrants = new Matrix[4];
if (rows < 2 || cols < 2) {
// Return four empty matrices.
return quadrants;
}
// Determine quadrant size so that all four quadrants are identical.
// For overlapping, use ceil for both dimensions.
unsigned int q_rows = (rows % 2 == 0) ? (rows / 2) : (rows / 2 + 1);
unsigned int q_cols = (cols % 2 == 0) ? (cols / 2) : (cols / 2 + 1);
// For an overlapping quarter, the top quadrants start at row 0,
// the bottom quadrants start at floor(rows/2), similarly for columns.
unsigned int start_row_bottom = rows / 2;
unsigned int start_col_right = cols / 2;
// Determine quadrant dimensions.
// Using (dim + 1) / 2 ensures that if the dimension is odd the shared middle row/col is included.
unsigned int quad_rows = (rows + 1) / 2;
unsigned int quad_cols = (cols + 1) / 2;
Matrix* quadrants = new Matrix[4]{
Matrix(q_rows, q_cols, 0.0), // Upper Left
Matrix(q_rows, q_cols, 0.0), // Upper Right
Matrix(q_rows, q_cols, 0.0), // Lower Left
Matrix(q_rows, q_cols, 0.0) // Lower Right
};
quadrants[0] = Matrix(quad_rows, quad_cols, 0.0); // Upper Left (UL)
quadrants[1] = Matrix(quad_rows, quad_cols, 0.0); // Upper Right (UR)
quadrants[2] = Matrix(quad_rows, quad_cols, 0.0); // Lower Left (LL)
quadrants[3] = Matrix(quad_rows, quad_cols, 0.0); // Lower Right (LR)
// Fill Upper Left quadrant from original (starting at (0,0)).
for (unsigned int i = 0; i < q_rows; i++) {
for (unsigned int j = 0; j < q_cols; j++) {
double value;
if (i < rows && j < cols && get(i, j, value))
quadrants[0].set(i, j, value);
// Fill UL quadrant: rows 0 .. quad_rows-1, cols 0 .. quad_cols-1.
for (unsigned int i = 0; i < quad_rows; i++) {
for (unsigned int j = 0; j < quad_cols; j++) {
quadrants[0].set(i, j, data[i][j]);
}
}
// Fill Upper Right quadrant from original (starting at (0, start_col_right)).
for (unsigned int i = 0; i < q_rows; i++) {
for (unsigned int j = 0; j < q_cols; j++) {
double value;
if (i < rows && (j + start_col_right) < cols && get(i, j + start_col_right, value))
quadrants[1].set(i, j, value);
// Fill UR quadrant: rows 0 .. quad_rows-1, cols (cols - quad_cols) .. (cols - 1).
for (unsigned int i = 0; i < quad_rows; i++) {
for (unsigned int j = 0; j < quad_cols; j++) {
quadrants[1].set(i, j, data[i][(cols - quad_cols) + j]);
}
}
// Fill Lower Left quadrant from original (starting at (start_row_bottom, 0)).
for (unsigned int i = 0; i < q_rows; i++) {
for (unsigned int j = 0; j < q_cols; j++) {
double value;
if ((i + start_row_bottom) < rows && j < cols && get(i + start_row_bottom, j, value))
quadrants[2].set(i, j, value);
// Fill LL quadrant: rows (rows - quad_rows) .. (rows - 1), cols 0 .. quad_cols-1.
for (unsigned int i = 0; i < quad_rows; i++) {
for (unsigned int j = 0; j < quad_cols; j++) {
quadrants[2].set(i, j, data[(rows - quad_rows) + i][j]);
}
}
// Fill Lower Right quadrant from original (starting at (start_row_bottom, start_col_right)).
for (unsigned int i = 0; i < q_rows; i++) {
for (unsigned int j = 0; j < q_cols; j++) {
double value;
if ((i + start_row_bottom) < rows && (j + start_col_right) < cols &&
get(i + start_row_bottom, j + start_col_right, value))
quadrants[3].set(i, j, value);
// Fill LR quadrant: rows (rows - quad_rows) .. (rows - 1), cols (cols - quad_cols) .. (cols - 1).
for (unsigned int i = 0; i < quad_rows; i++) {
for (unsigned int j = 0; j < quad_cols; j++) {
quadrants[3].set(i, j, data[(rows - quad_rows) + i][(cols - quad_cols) + j]);
}
}
return quadrants;
}
//-------------------------
// Equality Operators
//-------------------------
//overloaded output operator to print the matrix
// 4 x 4 matrix:
// [ 14 14 14 14
// 14 14 14 14
// 14 9 14 14
// 14 14 14 13 ]
std::ostream& operator<<(std::ostream& out, const Matrix& m) {
out << m.rows << " x " << m.cols << " matrix:" << std::endl;
out << "[ ";
for (unsigned int i = 0; i < m.rows; i++) {
for (unsigned int j = 0; j < m.cols; j++) {
out << m.data[i][j];
if(j < m.cols - 1)
out << " ";
bool Matrix::operator==(const Matrix &other) const {
if (rows != other.rows || cols != other.cols)
return false;
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
if (data[i][j] != other.data[i][j])
return false;
}
if(i < m.rows - 1)
out << std::endl << " ";
}
out << " ]";
return true;
}
bool Matrix::operator!=(const Matrix &other) const {
return !(*this == other);
}
//-------------------------
// Overloaded Output Operator
//-------------------------
std::ostream& operator<<(std::ostream &out, const Matrix &m) {
out << m.rows << " x " << m.cols << " matrix:" << std::endl;
out << "[";
if (m.rows > 0 && m.cols > 0) {
for (unsigned int i = 0; i < m.rows; i++) {
out << " ";
for (unsigned int j = 0; j < m.cols; j++) {
out << m.data[i][j];
if (j < m.cols - 1)
out << " ";
}
if (i < m.rows - 1)
out << std::endl;
}
out << " ]";
} else {
out << " ]";
}
return out;
}