renaming labs

This commit is contained in:
Jidong Xiao
2025-01-07 17:17:59 -05:00
parent 190e7fd7f4
commit 77eb9240b2
36 changed files with 1547 additions and 1071 deletions

57
labs/trees_I/README.md Normal file
View File

@@ -0,0 +1,57 @@
# Lab 10 — Trees, Binary Trees, & Binary Search Trees
## Checkpoint 1
*estimate: 20-30 minutes*
problem 1: Draw a binary tree with 4 levels with the integers 1-7 such that the sum of elements on every level of the tree is the same.
problem 2: Create a exactly balanced binary search tree with 7 color words (order the colors alphabetically).
problem 3: Draw a exactly-balanced binary search tree containing the letters of the word: uncopyrightable
 
 
 
 
 
 
 
What is the pre-order traversal of the tree above?
problem 4: Now draw a exactly-balanced binary tree of characters such that a post-order traversal spells the word: uncopyrightable
 
 
 
 
 
 
 
What is the breadth-first traversal of the tree above?
**To complete this checkpoint**: When you have finished all of the problems, discuss your answers with your lab TA or mentor.
## Checkpoint 2
*estimate: 20-35 minutes*
Now lets explore the implementation of the ds_set class, along with the use of recursive functions to manipulate binary search trees. Download and examine the files: [ds_set.h](ds_set.h) and [test_ds_set.cpp](test_ds_set.cpp).
The implementation of *find* provided in ds_set.h is recursive. Re-implement and test a non-recursive replacement for this function.
**To complete this checkpoint**: Show one of the TAs your new code. Be prepared to discuss the running time for the two different versions of *find* for various inputs.
## Checkpoint 3
*estimate: 20-35 minutes*
The implementation of the copy constructor and the assignment operator is not yet complete
because each depends on a private member function called *copy_tree*, the body of which has not yet been
written. Write *copy_tree* and then test to see if it works by “uncommenting” the appropriate code from the
main function.
**To complete this checkpoint**: Test your code and show one of the TAs your new code.

155
labs/trees_I/ds_set.h Normal file
View File

@@ -0,0 +1,155 @@
// Partial implementation of binary-tree based set class similar to std::set.
// The iterator increment & decrement operations have been omitted.
#ifndef ds_set_h_
#define ds_set_h_
#include <iostream>
#include <utility>
// -------------------------------------------------------------------
// TREE NODE CLASS
template <class T>
class TreeNode {
public:
TreeNode() : left(NULL), right(NULL) {}
TreeNode(const T& init) : value(init), left(NULL), right(NULL) {}
T value;
TreeNode* left;
TreeNode* right;
};
template <class T> class ds_set;
// -------------------------------------------------------------------
// TREE NODE ITERATOR CLASS
template <class T>
class tree_iterator {
public:
tree_iterator() : ptr_(NULL) {}
tree_iterator(TreeNode<T>* p) : ptr_(p) {}
tree_iterator(const tree_iterator& old) : ptr_(old.ptr_) {}
~tree_iterator() {}
tree_iterator& operator=(const tree_iterator& old) { ptr_ = old.ptr_; return *this; }
// operator* gives constant access to the value at the pointer
const T& operator*() const { return ptr_->value; }
// comparions operators are straightforward
bool operator== (const tree_iterator& rgt) { return ptr_ == rgt.ptr_; }
bool operator!= (const tree_iterator& rgt) { return ptr_ != rgt.ptr_; }
// increment & decrement will be discussed in Lecture 19 and Lab 11
private:
// representation
TreeNode<T>* ptr_;
};
// -------------------------------------------------------------------
// DS SET CLASS
template <class T>
class ds_set {
public:
ds_set() : root_(NULL), size_(0) {}
ds_set(const ds_set<T>& old) : size_(old.size_) {
root_ = this->copy_tree(old.root_); }
~ds_set() { this->destroy_tree(root_); root_ = NULL; }
ds_set& operator=(const ds_set<T>& old) {
if (&old != this) {
this->destroy_tree(root_);
root_ = this->copy_tree(old.root_);
size_ = old.size_;
}
return *this;
}
typedef tree_iterator<T> iterator;
int size() const { return size_; }
bool operator==(const ds_set<T>& old) const { return (old.root_ == this->root_); }
// FIND, INSERT & ERASE
iterator find(const T& key_value) { return find(key_value, root_); }
std::pair< iterator, bool > insert(T const& key_value) { return insert(key_value, root_); }
int erase(T const& key_value) { return erase(key_value, root_); }
// OUTPUT & PRINTING
friend std::ostream& operator<< (std::ostream& ostr, const ds_set<T>& s) {
s.print_in_order(ostr, s.root_);
return ostr;
}
void print_as_sideways_tree(std::ostream& ostr) const {
print_as_sideways_tree(ostr, root_, 0); }
// ITERATORS
iterator begin() const {
if (!root_) return iterator(NULL);
TreeNode<T>* p = root_;
while (p->left) p = p->left;
return iterator(p);
}
iterator end() const { return iterator(NULL); }
private:
// REPRESENTATION
TreeNode<T>* root_;
int size_;
// PRIVATE HELPER FUNCTIONS
TreeNode<T>* copy_tree(TreeNode<T>* old_root) {
// Implemented in Lab 10
}
void destroy_tree(TreeNode<T>* p) { /* Implemented in Lecture 18 */ }
iterator find(const T& key_value, TreeNode<T>* p) {
if (!p) return iterator(NULL);
if (p->value > key_value)
return find(key_value, p->left);
else if (p->value < key_value)
return find(key_value, p->right);
else
return iterator(p);
}
std::pair<iterator,bool> insert(const T& key_value, TreeNode<T>*& p) {
if (!p) {
p = new TreeNode<T>(key_value);
this->size_++;
return std::pair<iterator,bool>(iterator(p), true);
}
else if (key_value < p->value)
return insert(key_value, p->left);
else if (key_value > p->value)
return insert(key_value, p->right);
else
return std::pair<iterator,bool>(iterator(p), false);
}
int erase(T const& key_value, TreeNode<T>* &p) { /* Implemented in Lecture 19 or 20 */ }
void print_in_order(std::ostream& ostr, const TreeNode<T>* p) const {
if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p->right);
}
}
void print_as_sideways_tree(std::ostream& ostr, const TreeNode<T>* p, int depth) const {
if (p) {
print_as_sideways_tree(ostr, p->right, depth+1);
for (int i=0; i<depth; ++i) ostr << " ";
ostr << p->value << "\n";
print_as_sideways_tree(ostr, p->left, depth+1);
}
}
};
#endif

View File

@@ -0,0 +1,97 @@
#include <iostream>
#include <string>
#include <utility>
#include <cassert>
#include "ds_set.h"
int main() {
// build a set
ds_set<std::string> set1;
std::pair< ds_set<std::string>::iterator, bool > insert_result;
std::string to_insert = std::string("hello");
insert_result = set1.insert(to_insert);
assert(insert_result.second);
insert_result = set1.insert(std::string("good-bye"));
assert(insert_result.second);
insert_result = set1.insert(std::string("friend"));
assert(insert_result.second);
insert_result = set1.insert(std::string("abc"));
assert(insert_result.second);
insert_result = set1.insert(std::string("puppy"));
assert(insert_result.second);
insert_result = set1.insert(std::string("zebra"));
assert(insert_result.second);
insert_result = set1.insert(std::string("daddy"));
assert(insert_result.second);
insert_result = set1.insert(std::string("puppy"));
assert(!insert_result.second && * insert_result.first == std::string("puppy"));
ds_set<std::string>::iterator p = set1.begin();
assert(p != set1.end() && *p == std::string("abc"));
// visualize the set
std::cout << "The set size is " << set1.size()
<< "\nHere are the elements: \n" << set1 << std::endl;
p = set1.find("foo");
if (p == set1.end())
std::cout << "\"foo\" is not in the set\n";
else
std::cout << "\"foo\" is in the set\n"
<< "The iterator points to " << *p << std::endl;
p = set1.find("puppy");
if (p == set1.end())
std::cout << "\"puppy\" is not in the set\n";
else
std::cout << "\"puppy\" is in the set\n"
<< "The iterator points to " << *p << std::endl;
p = set1.find("daddy");
if (p == set1.end())
std::cout << "\"daddy\" is not in the set\n";
else
std::cout << "\"daddy\" is in the set\n"
<< "The iterator points to " << *p << std::endl;
std::cout << "\nHere is the tree, printed sideways.\n"
<< "The indentation is proportional to the depth of the node\n"
<< "so that the value stored at the root is the only value printed\n"
<< "without indentation. Also, for each node, the right subtree\n"
<< "can be found above where the node is printed and indented\n"
<< "relative to it\n\n";
set1.print_as_sideways_tree(std::cout);
/*
// Needed for checkpoint 3
ds_set<std::string> set2(set1);
std::cout << "set1.size() = " << set1.size() << ", set2.size() = " << set2.size() << std::endl;
std::cout << "\nHere is set2 printed sideways:\n";
set2.print_as_sideways_tree(std::cout);
// Now add more stuff to set2.
insert_result = set2.insert(std::string("a"));
assert(insert_result.second);
insert_result = set2.insert(std::string("b"));
assert(insert_result.second);
std::cout << "\nAfter two inserts:\n"
<< "set1.size() = " << set1.size() << ", set2.size() = " << set2.size() << "\n"
<< "\nThe contents of set1:\n" << set1 << std::endl
<< "\nThe contents of set2:\n" << set2 << std::endl;
*/
return 0;
}